1
|
Wang T, Shi Z, Zhong Y, Ma Y, He J, Zhu Z, Cheng XB, Lu B, Wu Y. Biomass-Derived Materials for Advanced Rechargeable Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310907. [PMID: 39051510 DOI: 10.1002/smll.202310907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Indexed: 07/27/2024]
Abstract
Biomass-derived materials generally exhibit uniform and highly-stable hierarchical porous structures that can hardly be achieved by conventional chemical synthesis and artificial design. When used as electrodes for rechargeable batteries, these structural and compositional advantages often endow the batteries with superior electrochemical performances. This review systematically introduces the innate merits of biomass-derived materials and their applications as the electrode for advanced rechargeable batteries, including lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, and metal-sulfur batteries. In addition, biomass-derived materials as catalyst supports for metal-air batteries, fuel cells, and redox-flow batteries are also included. The major challenges for specific batteries and the strategies for utilizing biomass-derived materials are detailly introduced. Finally, the future development of biomass-derived materials for advanced rechargeable batteries is prospected. This review aims to promote the development of biomass-derived materials in the field of energy storage and provides effective suggestions for building advanced rechargeable batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Zezhong Shi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Yiren Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Yuan Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
2
|
Memon AF, Ameen S, Khand NH, Qambrani N, Buledi JA, Junejo B, Solangi AR, Taqvi SIH, Dragoi EN, Zare N, Karimi F, Vasseghian Y. Electrochemical monitoring of bisphenol-s through nanostructured tin oxide/Nafion/GCE: A solution to environmental pollution. CHEMOSPHERE 2022; 303:135170. [PMID: 35640684 DOI: 10.1016/j.chemosphere.2022.135170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Over the past few decades, phenolic compounds have been broadly exploited in the industries to be utilized in several applications including polycarbonate plastic, food containers, epoxy resins, etc. One of the major compounds in phenolics is Bisphenol-S (BPS) which has dominantly replaced Bisphenol-A in several applications. Phenolic compounds are extensively drained into the environment without proper treatment and cause several health hazards. Thus, to tackle this serious problem an electrochemical sensor based on SnO2/GCE has been successfully engineered to monitor the low-level concentration of BPS in water samples. The fabrication of SnO2 nanoparticles (SnO2 NPs) was confirmed through FTIR, XRD, and TEM to examine the size, crystallinity, internal texture, and functionalities of the prepared material. The fabricated material was exploited as a chemically modified sensor for the determination of BPS in water samples collected from different sources. Under optimal conditions such as scan sweep 100 mV/s, PBS electrolyte pH of 6, potential window (0.3-1.3 V), the proposed sensor manifested an excellent response for BPS. The LOD of the present method for BPS was calculated as 0.007 μM, respectively. Moreover, the stability and selectivity profile of SnO2/GCE for BPS in the real matrix was examined to be outstanding.
Collapse
Affiliation(s)
- Almas F Memon
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Sidra Ameen
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, 67450, Sindh, Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Nadeem Qambrani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Bindia Junejo
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
| | - Syed Iqleem H Taqvi
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
3
|
Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries. MATERIALS 2021; 14:ma14051156. [PMID: 33804496 PMCID: PMC7957769 DOI: 10.3390/ma14051156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 11/19/2022]
Abstract
Tin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen as a carbon source. The electrode material exhibiting 467 mAh g−1 at the current density of 18 mA g−1 and a capacity fade of only 2% after 70 cycles is a potential candidate for graphite replacement. Such good electrochemical performance is due to strong interaction between amine groups from chitosan and surface hydroxyl groups of SnO2 at the preparation stage. However, the charge storage is mainly contributed by a diffusion-controlled process showing that the best results might be obtained for low current rates.
Collapse
|
4
|
|
5
|
Nowak AP, Sprynskyy M, Wojtczak I, Trzciński K, Wysocka J, Szkoda M, Buszewski B, Lisowska-Oleksiak A. Diatoms Biomass as a Joint Source of Biosilica and Carbon for Lithium-Ion Battery Anodes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1673. [PMID: 32260175 PMCID: PMC7178308 DOI: 10.3390/ma13071673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
The biomass of one type cultivated diatoms (Pseudostaurosira trainorii), being a source of 3D-stuctured biosilica and organic matter-the source of carbon, was thermally processed to become an electroactive material in a potential range adequate to become an anode in lithium ion batteries. Carbonized material was characterized by means of selected solid-state physics techniques (XRD, Raman, TGA). It was shown that the pyrolysis temperature (600 °C, 800 °C, 1000 °C) affected structural and electrochemical properties of the electrode material. Biomass carbonized at 600 °C exhibited the best electrochemical properties reaching a specific discharge capacity of 460 mAh g-1 for the 70th cycle. Such a value indicates the possibility of usage of biosilica as an electrode material in energy storage applications.
Collapse
Affiliation(s)
- Andrzej P. Nowak
- Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (K.T.); (J.W.); (M.S.)
| | - Myroslav Sprynskyy
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland; (M.S.); (I.W.); (B.B.)
| | - Izabela Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland; (M.S.); (I.W.); (B.B.)
| | - Konrad Trzciński
- Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (K.T.); (J.W.); (M.S.)
| | - Joanna Wysocka
- Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (K.T.); (J.W.); (M.S.)
| | - Mariusz Szkoda
- Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (K.T.); (J.W.); (M.S.)
| | - Bogusław Buszewski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 11, 87-100 Toruń, Poland; (M.S.); (I.W.); (B.B.)
| | - Anna Lisowska-Oleksiak
- Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (K.T.); (J.W.); (M.S.)
| |
Collapse
|
6
|
Environmentally Friendly and Cost-Effective Synthesis of Carbonaceous Particles for Preparing Hollow SnO2 Nanospheres and their Bifunctional Li-Storage and Gas-Sensing Properties. CRYSTALS 2020. [DOI: 10.3390/cryst10030231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The templated preparation of hollow nanomaterials has received broad attention. However, many templates are expansive, environmentally-harmful, along with involving a complicated preparation process. Herein, we present a cost-effective, environmentally friendly and simple approach for making carbonaceous particles which have been demonstrated as efficient templates for preparing hollow nanospheres. Natural biomass, such as wheat or corn, is used as the source only, and thus other chemicals are not needed. The carbonaceous particles possess abundant hydroxyl and carboxyl groups, enabling them to efficiently adsorb metal ions in solution. The prepared SnO2 hollow spheres were used in a lithium-ion (Li-ion) battery anode, and as the sensing layer of a gas sensor, respectively. After charge–discharge for 200 times at a rate of 1 C, the anodes exhibit a stable capacity of 500 mAh g−1, and a Coulombic efficiency as high as 99%. In addition, the gas sensor based on the SnO2 hollow spheres shows a high sensing performance towards ethanol gas. It is expected that the presented natural biomass-derived particles and their green preparation method will find more applications for broad research fields, including energy-storage and sensors.
Collapse
|
7
|
Amorphous N-rich organic polymer/carbon nanotube composites as effective anode material for advanced lithium ion batteries. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-1979-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
8
|
Nowak A, Sprynskyy M, Brzozowska W, Lisowska-Oleksiak A. Electrochemical behavior of a composite material containing 3D-structured diatom biosilica. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101538] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Luan Y, Nie G, Zhao X, Qiao N, Liu X, Wang H, Zhang X, Chen Y, Long YZ. The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.204] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|