Ma T, Xu S, Zhu M. Hierarchical Porous Carbon Based on Waste Quinoa Straw for High-Performance Supercapacitors.
ACS OMEGA 2024;
9:13592-13602. [PMID:
38559948 PMCID:
PMC10976366 DOI:
10.1021/acsomega.3c04692]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/24/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
This work presents a novel porous activated carbon electrode based on quinoa straw (QSC), which is derived from the Qinghai-Tibet Plateau. The QSC is prepared through simple precarbonization and potassium carbonate (K2CO3) activation processes and is intended for use in supercapacitors. The QSC-3 exhibits a high specific capacitance of 469.5 F g-1 at a current density of 0.5 A g-1, as well as a high specific surface area of 1802 m2 g-1. Additionally, symmetrical supercapacitors assembled using QSC-3 samples demonstrate a superior energy power density. In a 3 M KOH electrolyte, the energy density can reach 15.0 Wh kg-1 at a power density of 689.7 W kg-1. In a 1 M Na2SO4 electrolyte, the power density reaches 999.00 W kg-1, and the energy density is 39.68 Wh kg-1. Furthermore, the device shows excellent cycle life in both 3 M KOH and 1 M Na2SO4 electrolytes, with capacitance retentions of 97.55% and 96.20% after 10 000 cycles, respectively. This study provides an excellent example of utilizing waste quinoa straw to achieve low-cost, high-performance supercapacitor electrode material for sustainable electrochemical energy storage systems.
Collapse