1
|
Liu Z, Navik R, Tan H, Xiang Q, Wahyudiono, Goto M, Ibarra RM, Zhao Y. Graphene-based materials prepared by supercritical fluid technology and its application in energy storage. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Saha S, Arole K, Radovic M, Lutkenhaus JL, Green MJ. One-step hydrothermal synthesis of porous Ti 3C 2T z MXene/rGO gels for supercapacitor applications. NANOSCALE 2021; 13:16543-16553. [PMID: 34542125 DOI: 10.1039/d1nr02114a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium carbide/reduced graphene oxide (Ti3C2Tz/rGO) gels were prepared by a one-step hydrothermal process. The gels show a highly porous structure with a surface area of ∼224 m2 g-1 and average pore diameter of ∼3.6 nm. The content of GO and Ti3C2Tz nanosheets in the reaction precursor was varied to yield different microstructures. The supercapacitor performance of Ti3C2Tz/rGO gels varied significantly with composition. Specific capacitance initially increased with increasing Ti3C2Tz content, but at high Ti3C2Tz content gels cannot be formed. Also, the retention of capacitance decreased with increasing Ti3C2Tz content. Ti3C2Tz/rGO gel electrodes exhibit enhanced supercapacitor properties with high potential window (1.5 V) and large specific capacitance (920 F g-1) in comparison to pure rGO and Ti3C2Tz. The synergistic effect of EDLC from rGO and redox capacitance from Ti3C2Tz was the reason for the enhanced supercapacitor performance. A symmetric two-electrode supercapacitor cell was constructed with Ti3C2Tz/rGO, which showed very high areal capacitance (158 mF cm-2), large energy density (∼31.5 μW h cm-2 corresponding to a power density of ∼370 μW cm-2), and long stability (∼93% retention) after 10 000 cycles.
Collapse
Affiliation(s)
- Sanjit Saha
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Kailash Arole
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Miladin Radovic
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Structural, electrical and electrochemical studies of ionic liquid-based polymer gel electrolyte using magnesium salt for supercapacitor application. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02597-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractIn the present studies, the effect of ionic liquid 1-Ethyl-2,3-dimethylimidazoliumtetrafluoroborate (EDiMIM)(BF4) on ionic conductivity of gel polymer electrolyte using poly(vinylidene fluoride-co-hexafluoropropylene) [PVdF(HFP)] and magnesium perchlorate [Mg(ClO4)2] as salt was investigated. The maximum room temperature ionic conductivity for the optimized system was found to be of the order of 8.4 × 10–3 S cm−1. The optimized composition reflects Vogel-Tammann-Fulcher (VTF) behavior in the temperature range of 25 °C to 100 °C. The X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies confirm the uniform blending of ionic liquid, polymer, and salts along with the enhanced amorphous nature of the optimized system. Dielectric and modulus spectra studies provide the information of electrode polarization as well as dipole relaxation properties of polymeric materials. The optimized electrolyte system possesses a sufficiently large electrochemical window of the order of 6.0 V with stainless steel electrodes.
Collapse
|
4
|
Barik R, Yadav AK, Jha SN, Bhattacharyya D, Ingole PP. Two-Dimensional Tungsten Oxide/Selenium Nanocomposite Fabricated for Flexible Supercapacitors with Higher Operational Voltage and Their Charge Storage Mechanism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8102-8119. [PMID: 33591180 DOI: 10.1021/acsami.0c15818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present work elaborates the high-energy-density, stable, and flexible supercapacitor devices (full-cell configuration with asymmetric setup) based on a two-dimensional tungsten oxide/selenium (2D WO3/Se) nanocomposite. For this, the 2D WO3/Se nanocomposite synthesized by a hydrothermal method followed by air annealing was coated on a flexible carbon cloth current collector and combined separately with both 0.1 M H2SO4 and 1-butyl-3-methyl imidazolium tetrafluoroborate room temperature ionic liquid (BmimBF4 RTIL) as electrolyte. Different physicochemical characterization techniques, viz., transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, are utilized for phase confirmation and morphology identification of the obtained samples. The electrochemical analysis was used to evaluate charge storage mechanism. The half-cell configuration (three electrode system) in 0.1 M H2SO4 shows a specific capacitance of 564 F g-1 at 6 A g-1 current density, whereas with ionic liquid as electrolyte, a higher specific capacitance of 1650 F g-1 was obtained at a higher current of 40 mA and working potential of 4 V. Importantly, the asymmetric flexible supercapacitor device with PVA-H2SO4 electrolyte shows a working voltage of 1.7 V. A specific capacitance of 858 mF g-1 is obtained for the asymmetric electrode system with an energy density of 47 mWh kg-1 and a power density of 345 mW kg-1 at a current density of 0.2 A g-1.
Collapse
Affiliation(s)
- Rasmita Barik
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Kumar Yadav
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Shambhu Nath Jha
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Dibyendu Bhattacharyya
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400094, India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Xu C, Yang G, Wu D, Yao M, Xing C, Zhang J, Zhang H, Li F, Feng Y, Qi S, Zhuo M, Ma J. Roadmap on Ionic Liquid Electrolytes for Energy Storage Devices. Chem Asian J 2021; 16:549-562. [PMID: 33377601 DOI: 10.1002/asia.202001414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Indexed: 11/09/2022]
Abstract
Ionic liquids are considered to be promising electrolyte solvents or additives for rechargeable batteries (i. e., lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, aluminum-ion batteries, etc.) and supercapacitors. This is related with the superior physical and electrochemical properties of ionic liquids, which can influence the performance of rechargeable batteries. Therefore, it is necessary to write a roadmap on ionic liquids for rechargeable batteries. In this roadmap, some progress, critical techniques, opportunities and challenges of ionic liquid electrolytes for various batteries and supercapacitors are pointed out. Especially, properties and roles of ionic liquids should be considered in energy storage. Ionic liquids can be used as electrolyte salts, electrolyte additives, and solvents. For optimizing ionic liquid-based electrolytes for energy storage, their applications in various energy storage devices should be considered by combing native chemical/physical properties and their roles. We expect that this roadmap will give a useful guidance in directing future research in ionic liquid electrolytes for rechargeable batteries and supercapacitors.
Collapse
Affiliation(s)
- Chenxuan Xu
- School of Physics and Electronics, Hunan University, Changsha, 410082, Hunan, P. R. China
| | - Guang Yang
- National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Daxiong Wu
- School of Physics and Electronics, Hunan University, Changsha, 410082, Hunan, P. R. China
| | - Meng Yao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chunxian Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiahe Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haitao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fang Li
- School of Physics and Electronics, Hunan University, Changsha, 410082, Hunan, P. R. China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, Henan, P. R. China
| | - Shihan Qi
- School of Physics and Electronics, Hunan University, Changsha, 410082, Hunan, P. R. China
| | - Ming Zhuo
- College of Intelligence Science, National University of Defense Technology, Changsha, 410003, Hunan, P. R. China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha, 410082, Hunan, P. R. China
| |
Collapse
|
6
|
Shen E, Song X, Chen Q, Zheng M, Bian J, Liu H. Spontaneously Forming Oxide Layer of High Entropy Alloy Nanoparticles Deposited on Porous Carbons for Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202001289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Enhui Shen
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Xuehua Song
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Qibin Chen
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Mengmeng Zheng
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Jianqing Bian
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| | - Honglai Liu
- East China University of Science and Technology State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering 130 Meilong Road Shanghai China
| |
Collapse
|
7
|
Zhao N, Fan H, Zhang M, Ma J, Zhang W, Wang C, Li H, Jiang X, Cao X. Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134681] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|