Zhu T, Chen D, Mao Y, Cao Y, Wang W, Li Y, Jiang H, Shen S, Liao Q. Hollow Structure Co
1-xS/3D-Ti
3C
2T
x MXene Composite for Separator Modification of Lithium-Sulfur Batteries.
ACS APPLIED MATERIALS & INTERFACES 2023. [PMID:
38041635 DOI:
10.1021/acsami.3c13234]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The commercial application of lithium-sulfur (Li-S) batteries has faced obstacles, including challenges related to low sulfur utilization, structural degradation resulting from electrode volume expansion, and migration of polysulfide lithium (LiPSs). Herein, Co1-xS/3D-Ti3C2Tx composites with three-dimensional (3D) multilayered structures are used as separator modification materials for Li-S batteries to solve these problems. The multilevel layered structure of Co1-xS/3D-Ti3C2Tx establishes an efficient electron and Li+ transfer path, alleviates the volume change during the battery charge-discharge process, and enhances the stability of the structure. In addition, the battery assembled with the modified separator shows excellent discharge capacity and cycle stability at 0.5 C and could maintain a high discharge capacity after 500 cycles. This work provides a method for designing highly dispersed metal sulfide nanoparticles on MXenes and extends the application of MXenes-based composites in electrochemical energy storage.
Collapse