1
|
Varas M, Castro-Rojas J, Contreras-Porcia L, Ureta-Zañartu MS, Blanco E, Escalona N, Muñoz E, Garrido-Ramírez E. Enhancing the Biosorption Capacity of Macrocystis pyrifera: Effects of Acid and Alkali Pretreatments on Recalcitrant Organic Pollutants Removal. Int J Mol Sci 2025; 26:3307. [PMID: 40244170 PMCID: PMC11989721 DOI: 10.3390/ijms26073307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The effects of acid and alkali pretreatments on the physicochemical and textural properties of Macrocystis pyrifera were evaluated to assess its potential for removing recalcitrant organic pollutants from aquatic systems. Untreated (UB), acid-pretreated (ACPB), and alkali-pretreated (ALPB) seaweed biomass were characterized using SEM, FTIR-ATR, N2 adsorption-desorption, and potentiometric titrations. Adsorption isotherms and kinetic studies, using methylene blue (MB) as a model pollutant, were conducted to evaluate removal performance. All biosorbents exhibited Langmuir behavior, with maximum adsorption capacities of 333 mg g-1 (UB), 189 mg g-1 (ACPB), and 526 mg g-1 (ALPB). FTIR-ATR and SEM analyses revealed that alkali pretreatment increased the abundance of hydroxyl, carboxylate, and sulfonated functional groups on the seaweed cell walls, along with greater porosity and surface roughness, resulting in enhanced MB adsorption. In contrast, acid pretreatment increased the exposure of carboxylic, amine, and amide functional groups, reducing the electrostatic interactions. The adsorption energy values further supported this, while the intra-particle diffusion model indicated a two-step process involving MB diffusion onto the seaweed surface, followed by diffusion into internal pores. These findings highlight the potential application of Macrocystis pyrifera-based biosorbents in the treatment of wastewater containing recalcitrant organic pollutants.
Collapse
Affiliation(s)
- Magdalena Varas
- Escuela de Ciencias Ambientales y Sustentabilidad, Universidad Andres Bello, República 440, Santiago 8370251, Chile (J.C.-R.)
| | - Jorge Castro-Rojas
- Escuela de Ciencias Ambientales y Sustentabilidad, Universidad Andres Bello, República 440, Santiago 8370251, Chile (J.C.-R.)
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile;
- Centro de Investigación Marina Quintay (CIMARQ), Facultad Ciencias de la Vida, Universidad Andres Bello, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - María Soledad Ureta-Zañartu
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
| | - Elodie Blanco
- Departamento de Ingeniería y Gestión de Construcción, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
- ANID–Millennium Science Initiative Program, Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Santiago 7820436, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Néstor Escalona
- ANID–Millennium Science Initiative Program, Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Santiago 7820436, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Edmundo Muñoz
- Centro de Investigación para la Sustentabilidad (CIS), Facultad Ciencias de La Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile;
| | - Elizabeth Garrido-Ramírez
- Centro de Investigación para la Sustentabilidad (CIS), Facultad Ciencias de La Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile;
| |
Collapse
|
2
|
Castro-Rojas J, Jofré-Dupre P, Escalona N, Blanco E, Ureta-Zañartu MS, Mora ML, Garrido-Ramírez E. Atrazine degradation through a heterogeneous dual-effect process using Fe-TiO 2-allophane catalysts under sunlight. Heliyon 2024; 10:e32894. [PMID: 38994084 PMCID: PMC11237973 DOI: 10.1016/j.heliyon.2024.e32894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
This study investigated the novel application of Fe-TiO2-allophane catalysts with 6.0 % w/w of iron oxide and two TiO2 proportions (10 % and 30 % w/w) for degrading atrazine (ATZ) using the heterogeneous dual-effect (HDE) process under sunlight. Comparative analyses with Fe-allophane and TiO2-allophane catalysts were conducted in both photocatalysis (PC) and HDE processes. FTIR spectra reveal the unique hydrous feldspathoids structure of allophane, showing evidence of new bond formation between Si-O groups of allophane clays and iron hydroxyl species, as well as Si-O-Ti bonds that intensified with higher TiO2 content. The catalysts exhibited an anatase structure. In Fe-TiO2-allophane catalysts, iron oxide was incorporated through the substitution of Ti4+ by Fe3+ in the anatase crystal lattice and precipitation on the surface of allophane clays, forming small iron oxide particles. Allophane clays reduced the agglomeration and particle size of TiO2, resulting in an enhanced specific surface area and pore volume for all catalysts. Iron oxide incorporation decreased the band gap, broadening the photoresponse to visible light. In the PC process, TiO2-allophane achieves 90 % ATZ degradation, attributed to radical species from the UV component of sunlight. In the HDE process, Fe-TiO2-allophane catalysts exhibit synergistic effects, particularly with 30 % w/w TiO2, achieving 100 % ATZ degradation and 85 % COD removal, with shorter reaction time as TiO2 percentage increased. The HDE process was performed under less acidic conditions, achieving complete ATZ degradation after 6 h without iron leaching. Consequently, Fe-TiO2-allophane catalysts are proposed as a promising alternative for degrading emerging pollutants under environmentally friendly conditions.
Collapse
Affiliation(s)
- Jorge Castro-Rojas
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, Chile
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, 80055, Italy
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, Chile
| | - Pablo Jofré-Dupre
- Escuela de Ciencias Ambientales y Sustentabilidad, Universidad Andres Bello, República 440, Santiago, 83270255, Chile
| | - Néstor Escalona
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, 8320000, Chile
- Millennium Nucleus in Catalytic Processes towards Sustainable Chemistry (CSC), ANID Millennium Science Initiative Program, Santiago, 8320000, Chile
| | - Elodie Blanco
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, 8320000, Chile
- Millennium Nucleus in Catalytic Processes towards Sustainable Chemistry (CSC), ANID Millennium Science Initiative Program, Santiago, 8320000, Chile
- Department of Construction Engineering and Management, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, 8320000, Chile
| | - María Soledad Ureta-Zañartu
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, casilla 40, correo 33, Santiago, Chile
| | - Maria Luz Mora
- Center of Plant Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, PO Box 54-D, Temuco, Chile
| | - Elizabeth Garrido-Ramírez
- Escuela de Ciencias Ambientales y Sustentabilidad, Universidad Andres Bello, República 440, Santiago, 83270255, Chile
- Centro de Investigación para la Sustentabilidad (CIS), Facultad de Ciencias de La Vida, Universidad Andres Bello, Republica 440, Santiago, 8327055, Chile
| |
Collapse
|