1
|
Huang P, Meng L, Pang J, Huang H, Ma J, He L, Amani P. Development of a high-performance label-free electrochemical immunosensor for early cancer diagnosis using anti-CEA/Ag-MOF/GO/GCE nanocomposite. ENVIRONMENTAL RESEARCH 2023; 238:117178. [PMID: 37734580 DOI: 10.1016/j.envres.2023.117178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
In order to detect carcinoembryonic antigen (CEA) as a tumor marker in lung cancer for early cancer diagnosis, this study aimed to develop a label-free electrochemical immunosensor based on the immobilization of an Anti-CEA antibody on a metal-organic framework (MOF)-graphene oxide nanocomposite modified glassy carbon electrode (Anti-CEA/Ag-MOF/GO/GCE). Ag-MOF/GO nanocomposite was prepared on the GCE surface using the ultrasonic irradiation method, and Anti-CEA antibody was subsequently immobilized on the surface. Analysis of the crystal structure and morphology of the modified electrode using FE-SEM and XRD revealed that the correct combination of GO nanosheets and Ag-MOF nanoparticles produced a high surface area to trap the antibodies. Electrochemical tests utilizing the CV and DPV methods revealed that the immunosensor's sensitivity, stability, and selectivity were improved by Anti-CEA/Ag-MOF/GO/GCE. Results showed that, with a detection limit of 0.005 ng/mL, the change in the reduction peak current was inversely correlated with the logarithm concentration of CEA in the range of 10-3 to 5000 ng/mL. The suggested CEA immunosensor's applicability in a human serum sample was investigated, and findings of analytical studies via standard addition technique for both ELISA and DPV assays revealed that significant agreement existed between the outcomes of the two assays. Additionally, the recoveries ranged from 99.00% to 99.25%, and all relative standard deviations (RSDs) for the sample detections were below 5.01%, indicating satisfactory accuracy in results measured with the proposed CEA immunosensor, indicating that the prepared CEA immunosensor in this study can be used in clinical applications and human fluids.
Collapse
Affiliation(s)
- Peng Huang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
| | - Lingzhang Meng
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Guangxi, 533000, China
| | - Jun Pang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
| | - Haiting Huang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
| | - Jing Ma
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
| | - Linlin He
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
| | - Parnian Amani
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
2
|
Yang H, Zhang Z, Zhou X, Binbr Abe Menen N, Rouhi O. Achieving enhanced sensitivity and accuracy in carcinoembryonic antigen (CEA) detection as an indicator of cancer monitoring using thionine/chitosan/graphene oxide nanocomposite-modified electrochemical immunosensor. ENVIRONMENTAL RESEARCH 2023; 238:117163. [PMID: 37722583 DOI: 10.1016/j.envres.2023.117163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
The current study has focused on electrochemical immunosensing of carcinoembryonic antigen (CEA) employing an immobilized antibody on a thionine, chitosan, or graphene oxide nanocomposite modified glassy carbon electrode (anti-CEA/THi-CS-GO/GCE) as an indicator of cancer monitoring. THi-CS-GO nanocomposites were made using ultrasonication, and analyses of their morphology and crystal structure using SEM, FTIR, and XRD showed that thionine and chitosan molecules were intercalated with stacking interactions with both the top and bottom of GO nanosheets. Electrochemical experiments revealed anti-CEA, THi-CS-GO/GCE to have exceptional sensitivity and selectivity towards CEA compounds. The detection limit value was established to be 0.8 pg/mL when it was discovered that variations in the decrease peak current were directly proportional to the logarithm concentration of CEA over a wide range from 10-3 to 104 ng/mL. Results of testing the immunosensor's application capability for detecting CEA in a sample of human serum show that ELISA and DPV results are very congruent. The produced immunosensor demonstrated adequate immunosensor precision in determining CEA in prepared genuine samples of human serum and clinical applications.
Collapse
Affiliation(s)
- Hongli Yang
- Department of Science and Education, General Hospital of Panzhihua Steel Group, Panzhihua, 617000, Sichuan, China
| | - Zaihua Zhang
- General Surgery Department, Panzhihua Group General Hospital, Panzhihua, 617000, Sichuan, China
| | - Xiaohong Zhou
- Oncology hematology Department, Fengdu County People's Hospital of Chongqing, Chongqing, 400000, China.
| | | | - Omid Rouhi
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| |
Collapse
|
3
|
Tao C, Rouhi J. A biosensor based on graphene oxide nanocomposite for determination of carcinoembryonic antigen in colorectal cancer biomarker. ENVIRONMENTAL RESEARCH 2023; 238:117113. [PMID: 37696325 DOI: 10.1016/j.envres.2023.117113] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer is still a major global health concern, and early detection and accurate biomarker analyses are critical to its successful management. This paper describes the design and testing of a new biosensor based on a graphene oxide (GO) nanocomposite for the exact measurement of carcinoembryonic antigen (CEA), a well-known biomarker for colorectal cancer. The current study attempted to create a highly sensitive immunosensor for sensitive measurement of CEA based on a polypropylene-imine-dendrimer (PPI) and GO nanocomposite on GCE (PPI/GO/GCE). The PPI/GO nanocomposite served as an appropriate biocompatible nanostructure with a large surface area for immobilizing carcinoembryonic antigen (anti-CEA) and bovine serum albumin (BSA) molecules (BSA/anti-CEA/PPI/GO/GCE), thereby promoting the selectivity of electrochemical immunosensors, according to structural and electrochemical studies. Results showed that the BSA/anti-CEA/PPI/GO/GCE as a selective, sensitive, and stable immunosensor revealed a wide linear response from 0.001 to 2000 ng/mL, and a limit of detection of 0.3 pg/mL, which indicated comparable or better performance towards the CEA immunosensors in recent reports in the literature. This was due to the synergetic effect of the GO nanosheets and PPI with porous structure and more conductivity. Analytical results showed values of RSD (4.49%-5.04%) and recovery (90.00%-99.98%) are suitable for effective and accurate practical assessments in CEA in clinical samples. The capacity of the BSA/anti-CEA/PPI/GO/GCE to determine CEA in human blood was studied.
Collapse
Affiliation(s)
- Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran.
| |
Collapse
|
4
|
Wang X, Mohammadzadehsaliani S, Vafaei S, Ahmadi L, Iqbal A, Alreda BA, Talib Al-Naqeeb BZ, Kheradjoo H. Synthesis and electrochemical study of enzymatic graphene oxide-based nanocomposite as stable biosensor for determination of bevacizumab as a medicine in colorectal cancer in human serum and wastewater fluids. CHEMOSPHERE 2023:139012. [PMID: 37224975 DOI: 10.1016/j.chemosphere.2023.139012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
This work's goal was the fabrication of a graphene oxide-based nanocomposite biosensor for the determination of bevacizumab (BVZ) as a medicine for colorectal cancer in human serum and wastewater fluids. For the fabrication electrode, graphene oxide was electrodeposited on GCE (GO/GCE), and then DNA and monoclonal anti-bevacizumab antibodies were immobilized on the GO/GCE surface, respectively (Ab/DNA/GO/GCE). Structural characterization using XRD, SEM, and Raman spectroscopy confirmed the binding of DNA to GO nanosheets and the interaction of Ab with the DNA/GO array. Electrochemical characterization of Ab/DNA/GO/GCE using CV and DPV indicated immobilization of antibodies on DNA/GO/GCE and sensitive and selective behavior of modified electrodes for determination of BVZ. The linear range was obtained 10-1100 μg/mL, and the sensitivity and detection limit values were determined to be 0.14575 μA/μg.mL-1 and 0.02 μg/mL, respectively. To verify the applicability of the planned sensor for determination of BVZ in human serum and wastewater fluid specimens, the outcomes of DPV measurements using Ab, DNA, GO, and GCE and the results of the Bevacizumab ELISA Kit for determination of BVZ in prepared real specimens showed good conformity between the outcomes of both analyses. Moreover, the proposed sensor showed considerable assay precision with recoveries ranging from 96.00% to 98.90% and acceptable relative standard deviations (RSDs) below 5.11%, illustrating sufficiently good sensor accuracy and validity in the determination of BVZ in prepared real specimens of human serum and wastewater fluids. These outcomes demonstrated the feasibility of the proposed BVZ sensor in clinical and environmental assay applications.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Mechanical Engineering, Xi'an Jiaotong University City College, Xi'an, 710018, China
| | | | - Somayeh Vafaei
- Department of Molecularf Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Ahmadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Amjad Iqbal
- Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Baraa Abd Alreda
- Department of Medical Physics, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | | | | |
Collapse
|
5
|
Liu HC, Peng C, Wu MH, Hu G, Wang Z. Electrochemical sensor for determination of methylprednisolone as an anabolic steroid used in doping. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Ariza R, Urbieta A, Solis J, Fernández P. Optical Properties of 2D Micro- and Nanostructures of ZnO:K. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7733. [PMID: 36363324 PMCID: PMC9655181 DOI: 10.3390/ma15217733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
ZnO nano- and microstructures doped with K were grown by the Vapor-Solid method. Wires and needles are the main morphology observed, although some structures in the form of ribbons and triangular plates were also obtained. Besides these, ball-shaped structures which grow around a central wire were also detected. Raman and cathodoluminescence investigations suggest that variations in morphology, crystalline quality and luminescence emissions are related to the different lattice positions that K occupies depending on its concentration in the structures. When the amount is low, K ions mainly incorporate as interstitials (Ki), whereas K occupies substitutional positions of Zn (KZn) when the amount of K is increased. Electron Backscattered Diffraction shows that ribbons and triangular plates are oriented in the (0001) direction, which indicates that the growth of this type of morphologies is related to distortions introduced by the Ki since this position favors the growth in the (0001) plane. In the case of the ball-shaped structures, the compositional analysis and Raman spectra show that they consist of K2SO4. Finally, the capability of the elongated structures to act as waveguides and optical resonators was investigated. Due to the size of the K ion, practically double that of the Zn, and the different positions it can adopt within the ZnO lattice (Ki or KZn), high distortions are introduced that compromise the resonators performance. Despite this, quality factor (Q) and fineness (F) show acceptable values (80 and 10 at 544 nm, respectively), although smaller than those reported for doping with smaller size alkali, such as Li.
Collapse
Affiliation(s)
- Rocío Ariza
- Laser Processing Group, Institute of Optics (IO-CSIC), Serrano 121, 28006 Madrid, Spain
- Department of Materials Physics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Urbieta
- Department of Materials Physics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Solis
- Laser Processing Group, Institute of Optics (IO-CSIC), Serrano 121, 28006 Madrid, Spain
| | - Paloma Fernández
- Department of Materials Physics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Effects of alkali oxides and ion-exchange on the structure of zinc-alumino-silicate glasses and glass-ceramics. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2021.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Demir E, Orhan E, Goksu H. A catalytic regioselective procedure for the synthesis of aryl oximes in the presence of palladium nanoparticles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emine Demir
- Kaynasli Vocational College, Düzce University, Düzce, Turkey
| | - Ersin Orhan
- Department of Chemistry, Faculty of Arts and Sciences, Düzce University, Düzce, Turkey
| | - Haydar Goksu
- Kaynasli Vocational College, Düzce University, Düzce, Turkey
| |
Collapse
|
9
|
Imidazolium ionic liquid functionalized nano dendritic CuAl2O4 for visible light-driven photocatalytic degradation of dye pollutant. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Shamsa F, Motavalizadehkakhky A, Zhiani R, Mehrzad J, Hosseiny MS. ZnO nanoparticles supported on dendritic fibrous nanosilica as efficient catalysts for the one-pot synthesis of quinazoline-2,4(1 H,3 H)-diones. RSC Adv 2021; 11:37103-37111. [PMID: 35496431 PMCID: PMC9043541 DOI: 10.1039/d1ra07197a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
The transmutation of waste into valuable materials has a special place in green chemistry. Herein, we report the preparation of quinazoline-2,4(1H,3H)-diones from 2-iodoaniline, isocyanides, and carbon dioxide in the presence of ZnO NPs stably placed on the surface of dendritic fibrous nanosilica by cellulose (DFNS/cellulose-ZnO) as a catalyst. This is a great economic strategy to create three bonds in a one-pot multicomponent reaction step employing functional groups. To prepare the catalyst, the dendritic fibrous nanosilica surface was first activated using cellulose as a substrate to support ZnO NPs. Cellulose acts as a stabilizing and reducing agent for the ZnO nanocatalyst and eliminates the need for a reducing agent. The structure of the prepared DFNS/cellulose-ZnO was examined by various methods, including thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP). The largest amount of quinazoline-2,4(1H,3H)-diones was obtained under ideal situations in the presence of 5 mg of DFNS/cellulose-ZnO under carbon dioxide (1 atm) utilizing a balloon set at 70 °C for 3 hours. The substance was reused for ten consecutive runs and the quinazoline-2,4(1H,3H)-dione content was more than 92% each time. This indicates the potential for application in the green and economic production of quinazoline-2,4(1H,3H)-diones, especially from low-cost feedstocks. The transmutation of waste into valuable materials has a special place in green chemistry.![]()
Collapse
Affiliation(s)
- Farzaneh Shamsa
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advanced Research Center for Chemistry Biochemistry & Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | |
Collapse
|