1
|
Liu H, Zheng X, Du Y, Borrás MC, Wu K, Konstantinov K, Pang WK, Chou S, Liu H, Dou S, Wu C. Multifunctional Separator Enables High-Performance Sodium Metal Batteries in Carbonate-Based Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307645. [PMID: 37989269 DOI: 10.1002/adma.202307645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Sodium metal has become one of the most promising anodes for next-generation cheap and high-energy-density metal batteries; however, challenges caused by the uncontrollable sodium dendrite growth and fragile solid electrolyte interphase (SEI) restrict their large-scale practical applications in low-cost and wide-voltage-window carbonate electrolytes. Herein, a novel multifunctional separator with lightweight and high thinness is proposed, assembled by the cobalt-based metal-organic framework nanowires (Co-NWS), to replace the widely applied thick and heavy glass fiber separator. Benefitting from its abundant sodiophilic functional groups and densely stacked nanowires, Co-NWS not only exhibits outstanding electrolyte wettability and effectively induces uniform Na+ ion flux as a strong ion redistributor but also favors constructing the robust N,F-rich SEI layer. Satisfactorily, with 10 µL carbonate electrolyte, a Na|Co-NWS|Cu half-cell delivers stable cycling (over 260 cycles) with a high average Coulombic efficiency of 98%, and the symmetric cell shows a long cycle life of more than 500 h. Remarkably, the full cell shows a long-term life span (over 1500 cycles with 92% capacity retention) at high current density in the carbonate electrolyte. This work opens up a strategy for developing dendrite-free, low-cost, and long-life-span sodium metal batteries in carbonate-based electrolytes.
Collapse
Affiliation(s)
- Haoxuan Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Xiaoyang Zheng
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
| | - Yumeng Du
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Marcela Chaki Borrás
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Kuan Wu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Wei Kong Pang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huakun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chao Wu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
2
|
Yin X, Feng J, Chen Y, Zhang J, Wu F, Liu W, Shi W, Cao X. Advanced separator engineering strategies for reversible electrochemical zinc storage. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|