1
|
Interactions between 14-3-3 Proteins and Actin Cytoskeleton and Its Regulation by microRNAs and Long Non-Coding RNAs in Cancer. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3s are a family of structurally similar proteins that bind to phosphoserine or phosphothreonine residues, forming the central signaling hub that coordinates or integrates various cellular functions, thereby controlling many pathways important in cancer, cell motility, cell death, cytoskeletal remodeling, neuro-degenerative disorders and many more. Their targets are present in all cellular compartments, and when they bind to proteins they alter their subcellular localization, stability, and molecular interactions with other proteins. Changes in environmental conditions that result in altered homeostasis trigger the interaction between 14-3-3 and other proteins to retrieve or rescue homeostasis. In circumstances where these regulatory proteins are dysregulated, it leads to pathological conditions. Therefore, deeper understanding is needed on how 14-3-3 proteins bind, and how these proteins are regulated or modified. This will help to detect disease in early stages or design inhibitors to block certain pathways. Recently, more research has been devoted to identifying the role of MicroRNAs, and long non-coding RNAs, which play an important role in regulating gene expression. Although there are many reviews on the role of 14-3-3 proteins in cancer, they do not provide a holistic view of the changes in the cell, which is the focus of this review. The unique feature of the review is that it not only focuses on how the 14-3-3 subunits associate and dissociate with their binding and regulatory proteins, but also includes the role of micro-RNAs and long non-coding RNAs and how they regulate 14-3-3 isoforms. The highlight of the review is that it focuses on the role of 14-3-3, actin, actin binding proteins and Rho GTPases in cancer, and how this complex is important for cell migration and invasion. Finally, the reader is provided with super-resolution high-clarity images of each subunit of the 14-3-3 protein family, further depicting their distribution in HeLa cells to illustrate their interactions in a cancer cell.
Collapse
|
2
|
Hypoxia Promotes Glioma Stem Cell Proliferation by Enhancing the 14-3-3β Expression via the PI3K Pathway. J Immunol Res 2022; 2022:5799776. [PMID: 35607406 PMCID: PMC9124136 DOI: 10.1155/2022/5799776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/06/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Glioma is a serious fatal type of cancer with the shorter median survival period and poor quality of living. The overall 5-year survival rate remains low due to high recurrence rates. Glioma stem cells (GSCs) play the important roles in the development of gliomas. Examination of the numerous biomarkers or cancer-associated genes involved in the development or prevention of glioma may therefore serve the discovery of novel strategies to treat patients with glioma. Hypoxia induced by using CoCl2 application and 14-3-3β protein knockdown by specific small interfering RNA transfection were performed in GSCs both in vitro and in vivo to observe their role in glioma progression and metastasis occurrence by using western blot analysis and MTT assay. The results demonstrated that CoCl2 application enhanced the 14-3-3β protein expression and mRNA levels via the PI3K pathway in GSCs. Furthermore, hypoxia promoted GSC cell proliferation and activated the expression of proliferating cell nuclear antigen, which was inhibited following 14-3-3β knockdown. In addition, tumor growth in mice was enhanced by CoCl2 application but reversed following 14-3-3β knockdown, which also enhanced GSC cell apoptosis. In conclusion, the present study demonstrated that hypoxia promoted glioma growth both in vitro and in vivo by increasing the 14-3-3β expression via the PI3K signaling pathway. 14-3-3β and HIF-1α may therefore be considered as the potential therapeutic target to treat patients with glioma.
Collapse
|
3
|
Mariani CL, Niman ZE, Boozer LB, Ruterbories LK, Early PJ, Muñana KR, Olby NJ. Vascular endothelial growth factor concentrations in the cerebrospinal fluid of dogs with neoplastic or inflammatory central nervous system disorders. J Vet Intern Med 2021; 35:1873-1883. [PMID: 34105831 PMCID: PMC8295675 DOI: 10.1111/jvim.16181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is a key molecular driver of angiogenesis and vascular permeability and is expressed by a wide variety of neoplasms. Although blood VEGF concentrations have been quantified in intracranial tumors of dogs, cerebrospinal fluid (CSF) VEGF concentration might be a more sensitive biomarker of disease. Objective Concentrations of VEGF in CSF are higher in dogs with central nervous system (CNS) neoplasia compared to those with meningoencephalomyelitis and other neurologic disorders. Animals One hundred and twenty‐six client‐owned dogs presented to a veterinary teaching hospital. Methods Case‐control study. Cerebrospinal fluid was archived from dogs diagnosed with CNS neoplasia and meningoencephalomyelitis. Control dogs had other neurological disorders or diseases outside of the CNS. A commercially available kit was used to determine VEGF concentrations. Results Detectable CSF VEGF concentrations were present in 49/63 (77.8%) neoplastic samples, 22/24 (91.7%) inflammatory samples, and 8/39 (20.5%) control samples. The VEGF concentrations were significantly different between groups (P < .0001), and multiple comparison testing showed that both neoplastic and inflammatory groups had significantly higher concentrations than did controls (P < .05), but did not differ from each other. Gliomas and choroid plexus tumors had significantly higher VEGF concentrations than did the control group (P < .05). Conclusions and Clinical Importance Cerebrospinal fluid VEGF concentrations may serve as a marker of neoplastic and inflammatory CNS disorders relative to other conditions.
Collapse
Affiliation(s)
- Christopher L Mariani
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary E Niman
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Lindsay B Boozer
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA
| | - Laura K Ruterbories
- Comparative Neuroimmunology and Neuro-oncology Laboratory, North Carolina State University, Raleigh, North Carolina, USA.,Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Peter J Early
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen R Muñana
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
High expression of hypoxia inducible factor 1α related with acquired resistant to EGFR tyrosine kinase inhibitors in NSCLC. Sci Rep 2021; 11:1199. [PMID: 33441708 PMCID: PMC7806909 DOI: 10.1038/s41598-020-79801-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
The acquired resistance of the first generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is a main factor leading to poor prognosis of non-small cell lung cancer (NSCLC), so we researched whether the high expression of hypoxia-inducible factor-1α (HIF-1α) in EGFR-TKIs sensitive NSCLC tissue tends to induce the acquired resistance. We detected the HIF-1α in normal lung tissue, EGFR-TKIs sensitive NSCLC tissue, the first generation EGFR-TKIs acquired resistant NSCLC tissue and acquired EGFR T790M mutation NSCLC tissue with the method of immunohistochemistry. Then, we compared the expression of HIF-1α in these tissues, and evaluate the effect of HIF-1α expression to the occurrence of acquired resistance. The expression of HIF-1α was much higher in the EGFR-TKIs sensitive NSCLC tissue than that in normal lung tissue. HIF-1α level became higher after the occurrence acquired resistance. There was negative correlation between HIF-1α level before receiving treatment and the time of acquired resistance occurring as well as the acquired EGFR T790M mutation occurring. As the treatment going on, EGFR-TKIs sensitivity rate of low HIF-1α level group was much higher than that of high level group. The high expression of HIF-1α related with the acquired resistance of the first generation EGFR-TKIs, and HIF-1α can be a biomarker to predict the early occurrence of acquired resistance.
Collapse
|
5
|
Chen XY, Huang WL, Peng XP, Lv YN, Li JH, Xiong JP. miR-140-5p mediates bevacizumab-induced cytotoxicity to cardiomyocytes by targeting the VEGFA/14-3-3γ signal pathway. Toxicol Res (Camb) 2019; 8:875-884. [PMID: 32190292 DOI: 10.1039/c9tx00100j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Bevacizumab (BVZ) is the first recombinant humanized monoclonal antibody against vascular endothelial growth factor (VEGFA) approved by the FDA for the treatment of different kinds of cancers, especially colorectal cancer. Although the anti-tumor effects have been verified, the side effects of BVZ are also noteworthy, among which, cardiotoxicity may be the most serious side effect of BVZ. However, the exact mechanisms of cardiotoxicity induced by BVZ have been little explored. This study was conducted in vitro in a human cardiac myocyte (HCM) model. MTT assay was conducted to determine BVZ-stimulated cell viability. For testing the function and mechanism, the cells were transfected with miR-140-5p mimics, miR-140-5p inhibitor and/or VEGFA small interfering RNA (si-VEGFA). Then, apoptosis of the cells was detected via annexin V/propidium iodide (AV-PI) staining followed by flow cytometry. qRT-PCR and western blot assays were applied to measure gene expression (i.e. mRNA) and protein levels, respectively. The CK, LDH, SOD, CAT and GSH-Px activities and MDA level were determined using commercial kits. ROS levels were determined by DCFH-DA assay. Mitochondrial membrane potential was measured by JC-1 assay. Dual-luciferase reporter assay was used to detect the interaction between miR-140-5p and VEGFA. BVZ could inhibit HCM proliferation and induce apoptosis. miR-140-5p was upregulated in response to BVZ treatment and miR-140-5p restraint could alleviate HCM damage caused by BVZ treatment. In contrast, VEGFA and 14-3-3γ expressions were down-regulated by BVZ, and miR-140-5p could inhibit the expression of 14-3-3γ by directly targeting VEGFA. Moreover, VEGFA suppression enhanced HCM injury stimulated by BVZ and partially reversed the functional role of the miR-140-5p inhibitor in BVZ-treated cells. Taken together, miR-140-5p promoted BVZ-treated cardiomyocyte toxicity by targeting the VEGFA/14-3-3γ signal pathway. Collectively, miR-140-5p mediated the BVZ-induced cytotoxicity to cardiomyocytes by targeting the VEGFA/14-3-3γ signal pathway, indicating that miR-140-5p may be a novel target for treating BVZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuan-Ying Chen
- Department of Pharmacy , The First Affiliated Hospital , Nanchang University , Nanchang 330006 , P.R China
| | - Wei-Lin Huang
- Department of Cardiovascular , The First Affiliated Hospital , Nanchang University , Nanchang 330006 , P.R China
| | - Xiao-Ping Peng
- Department of Cardiovascular , The First Affiliated Hospital , Nanchang University , Nanchang 330006 , P.R China
| | - Yan-Ni Lv
- Department of Pharmacy , The First Affiliated Hospital , Nanchang University , Nanchang 330006 , P.R China
| | - Jun-He Li
- Department of Oncology , The First Affiliated Hospital , Nanchang University , Nanchang 330006 , P.R China . ; Tel: +86-13879109229
| | - Jian-Ping Xiong
- Department of Oncology , The First Affiliated Hospital , Nanchang University , Nanchang 330006 , P.R China . ; Tel: +86-13879109229
| |
Collapse
|
6
|
Li J, Xu H, Wang Q, Wang S, Xiong N. 14-3-3ζ promotes gliomas cells invasion by regulating Snail through the PI3K/AKT signaling. Cancer Med 2019; 8:783-794. [PMID: 30656845 PMCID: PMC6382716 DOI: 10.1002/cam4.1950] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
14-3-3ζ has been reported to function as critical regulators of diverse cellular responses. However, the role of 14-3-3ζ in gliomas progression remains largely unknown. The expression level of 14-3-3ζ and Snail was detected by Western blot analysis and quantitative polymerase chain reaction in different grades of human gliomas. The effect of 14-3-3ζ on gliomas progression was measured using cell migration and invasion assay, the colony formation experiment, and CCK-8 assay. The effect of 14-3-3ζ on PI3K/AKT/Snail signaling protein expression levels was tested by Western blotting. Firstly, 14-3-3ζ was often up-regulated in high-grade gliomas relative to low-grade gliomas, and this overexpression was significantly related to tumor size, Karnofsky Performance Scale score and weaker disease-free survival. Secondly, the overexpression of 14-3-3ζ promoted gliomas cells proliferation, migration, and invasion. Conversely, the knockdown of 14-3-3ζ suppressed gliomas cells proliferation, migration, and invasion. Furthermore, subsequent mechanistic studies showed that 14-3-3ζ could activate PI3K/AKT/Snail signaling pathway to facilitate gliomas cells proliferation, migration, and invasion. This study shows that the overexpression of 14-3-3ζ can promote remarkably gliomas cells proliferation, migration, and invasion by regulating the Snail protein expression through activating PI3K/AKT signaling, and it may serve as a potential prognostic marker and therapeutic target for gliomas.
Collapse
Affiliation(s)
- Junjun Li
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hao Xu
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiangping Wang
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sihua Wang
- Department of Thoracic surgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Nanxiang Xiong
- Department of NeurosurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
7
|
Otsuka S, Sakakima H, Terashi T, Takada S, Nakanishi K, Kikuchi K. Preconditioning exercise reduces brain damage and neuronal apoptosis through enhanced endogenous 14-3-3γ after focal brain ischemia in rats. Brain Struct Funct 2018; 224:727-738. [PMID: 30478609 DOI: 10.1007/s00429-018-1800-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/21/2018] [Indexed: 11/24/2022]
Abstract
14-3-3γ is an important early ischemia-inducible protective factor against ischemic cell death in cerebral cortical neurons. We investigated the anti-apoptosis mechanism of enhanced 14-3-3γ mediated by preconditioning exercise-induced brain ischemic tolerance after stroke. Rats were assigned to four groups: exercise and ischemia (Ex group), ischemia and no exercise (No-Ex group), exercise and no ischemia (Ex-only group), and no exercise and ischemia (control group). Rats were trained on a treadmill for 5 days a week for 3 weeks (running speed, 25 m/min; running duration, 30 min/day). After the exercise program, stroke was induced by left middle cerebral artery occlusion. The infarct volume, neurological deficits, and motor function, as well as expression levels of hypoxia-induced factor-1α (HIF-1α), 14-3-3γ, P2X7 receptors, p-β-catenin Ser37, Bax, and caspase 3 were evaluated by immunohistochemistry and western blotting. The expression of HIF-1α and 14-3-3γ significantly increased in neurons and astrocytes in the Ex-only group. HIF-1α was co-expressed with P2X7 receptor- and GFAP-positive astrocytes. After stroke, the Ex group had significantly reduced brain infarction. HIF-1α and 14-3-3γ significantly increased in the Ex group compared to the No-Ex group. In addition, p-β-catenin Ser37 significantly increased following elevated 14-3-3γ; in contrast, Bax and caspase 3 were significantly reduced in the Ex group. Our findings suggest that preconditioning exercise prior to ischemia induces neuron- and astrocyte-mediated brain ischemic tolerance through increased expression of HIF-1α and 14-3-3γ, which are intrinsic protective factors; the upregulated 14-3-3γ induced by preconditioning exercise reduces ischemic neuronal cell death through the 14-3-3γ/p-β-catenin Ser37/Bax/caspase 3 anti-apoptotic pathway.
Collapse
Affiliation(s)
- Shotaro Otsuka
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Harutoshi Sakakima
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Takuto Terashi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Seiya Takada
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuki Nakanishi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan.
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan.
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan.
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Das M, Das S. Identification of cytotoxic mediators and their putative role in the signaling pathways during docosahexaenoic acid (DHA)-induced apoptosis of cancer cells. Apoptosis 2016; 21:1408-1421. [DOI: 10.1007/s10495-016-1298-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Yang H, Wang Y. Five miRNAs considered as molecular targets for predicting neuroglioma. Tumour Biol 2015; 37:1051-9. [PMID: 26269115 DOI: 10.1007/s13277-015-3898-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/05/2015] [Indexed: 02/04/2023] Open
Abstract
Neuroglioma is a complex neuroglial tumor involving dysregulation of many biological pathways at multiple levels. Here, we aim to screen differentially expressed miRNAs (DEMs) as well as the functions and pathways of their target genes in neuroglioma. miRNA high-throughput sequencing data were downloaded from The Cancer Genome Atlas (TCGA), and then the DEMs were subjected to perform principal component analysis (PCA) based on their expression values. Following that, Targetscan software was used to predict the target genes, and enrichment analysis and pathway annotation of these target genes were done by DAVID and KEGG, respectively. Finally, survival analysis between the DEMs and patients' survival time was done, and the miRNAs with prediction potential were obtained. A total of 33 DEMs were obtained, among which 25 miRNAs were upregulated including hsa-mir-675, hsa-mir-196a-1, and hsa-mir-196a-2, while eight miRNAs were downregulated including hsa-mir-1911, hsa-mir-1264, and hsa-mir-1298. Five miRNAs with diagnostic and preventive potentials were significantly correlated with survival time, including has-mir-155, has-mir-199b, has-mi-10a, has-mir-1274b, and has-mir-455. The target genes of miRNA identified in this study played important roles in tumor signaling pathways, and their detailed functions could be further studied so as to explore novel neuroglioma therapies.
Collapse
Affiliation(s)
- Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 140# Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 140# Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|