1
|
Cakmak P, Jurmeister P, Divé I, Zeiner PS, Steinbach JP, Fenton TR, Plate KH, Czabanka M, Harter PN, Weber KJ. DNA methylation-based analysis reveals accelerated epigenetic aging in giant cell-enriched adult-type glioblastoma. Clin Epigenetics 2024; 16:179. [PMID: 39663543 PMCID: PMC11636044 DOI: 10.1186/s13148-024-01793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Giant cell (gc)-enriched glioblastoma (gcGB) represents a distinct histological variant of isocitrate dehydrogenase wild-type adult-type glioblastoma with notable enlarged mono- or multinuclear tumor cells. While some studies suggest a survival advantage for gcGB patients, the underlying causes remain elusive. GcGBs are associated with TP53 mutations, and gcs were shown to accumulate DNA double-strand breaks and show deficient mitosis, potentially triggering cellular senescence programs. Epigenetic clocks have emerged as valuable tools for assessing tumor-induced age acceleration (DNAMethAgeAcc), which has lately proved itself as prognostic biomarker in glioblastoma. Our study aimed to comprehensively analyze the methylome and key metabolic proteins of gcGBs, hypothesizing that they undergo cellular aging programs compared to non-gcGBs. RESULTS A total of 310 epigenetically classified GBs, including 26 gcGBs, and nine adults with malignant gliomas allocating to pediatric high-grade glioma molecular subclasses (summarized as "pediatric GB") were included. DNAMethAgeAcc was computed by subtraction of chronological patient ages from DNA methylome-derived age estimations and its increase was associated with better survival within gcGB and non-gcGB. GcGBs were significantly more often allocated to the subgroup with increased DNAMethAgeAcc and demonstrated the highest DNAMethAgeAcc. Hypothetical senescence/aging-induced changes of the tumor microenvironment were addressed by tumor deconvolution, which was able to identify a cluster enriched for tumors with increased DNAMethAgeAcc. Key metabolic protein expression did not differ between gcGB and non-gcGB and tumor with versus without increased DNAMethAgeAcc but for elevated levels of one single mitochondrial marker, anti-mitochondrial protein MT-C02, in gcGBs. CONCLUSIONS With its sped-up epigenetic aging, gcGB presented as the epigenetic oldest GB variant in our cohort. Whereas the correlation between accelerated tumor-intrinsic epigenetic aging and cellular senescence in gcGB stays elusive, fostering epigenetic aging programs in GB might be of interest for future exploration of alternative treatment options in GB patients.
Collapse
Affiliation(s)
- Pinar Cakmak
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Philipp Jurmeister
- Ludwig Maximilians University Munich, University Hospital, Institute of Pathology, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between German Cancer Research Center (DKFZ) and University/University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Iris Divé
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Pia S Zeiner
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Department of Neurology, Frankfurt, Germany
| | - Joachim P Steinbach
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Tim R Fenton
- Somers Cancer Research, Southampton General Hospital, Southampton, UK
| | - Karl H Plate
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany
| | - Marcus Czabanka
- Goethe University Frankfurt, University Hospital, Department of Neurosurgery, Frankfurt, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between German Cancer Research Center (DKFZ) and University/University Hospital, Ludwig Maximilians University Munich, Munich, Germany
- Ludwig Maximilians University Munich, University Hospital, Center for Neuropathology and Prion Research, Munich, Germany
| | - Katharina J Weber
- Goethe University Frankfurt, University Hospital, Neurological Institute (Edinger Institute), Frankfurt, Germany.
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt, Germany.
| |
Collapse
|
2
|
Kirishima M, Yokoyama S, Akahane T, Higa N, Uchida H, Yonezawa H, Matsuo K, Yamamoto J, Yoshimoto K, Hanaya R, Tanimoto A. Prognosis prediction via histological evaluation of cellular heterogeneity in glioblastoma. Sci Rep 2024; 14:24955. [PMID: 39438642 PMCID: PMC11496527 DOI: 10.1038/s41598-024-76826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastomas (GBMs) are the most aggressive types of central nervous system tumors. Although certain genomic alterations have been identified as prognostic biomarkers of GBMs, the histomorphological features that predict their prognosis remain elusive. In this study, following an integrative diagnosis of 227 GBMs based on the 2021 World Health Organization classification system, the cases were histologically fractionated by cellular variations and abundance to evaluate the relationship between cellular heterogeneity and prognosis in combination with O-6-methylguanine-DNA methyltransferase gene promoter methylation (mMGMTp) status. GBMs comprised four major cell types: astrocytic, pleomorphic, gemistocytic, and rhabdoid cells. t-distributed stochastic neighbor embedding analysis using the histological abundance of heterogeneous cell types identified two distinct groups with significantly different prognoses. In individual cell component analysis, the abundance of gemistocytes showed a significantly favorable prognosis but confounding to mMGMTp status. Conversely, the abundance of epithelioid cells was correlated with the unfavorable prognosis. Linear model analysis showed the favorable prognostic utility of quantifying gemistocytic and epithelioid cells, independent of mMGMTp. The evaluation of GBM cell histomorphological heterogeneity is more effective for prognosis prediction in combination with mMGMTp analysis, indicating that histomorphological analysis is a practical and useful prognostication tool in an integrative diagnosis of GBMs.
Collapse
Affiliation(s)
- Mari Kirishima
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Seiya Yokoyama
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Toshiaki Akahane
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kei Matsuo
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Yahatanishi-Ku, Kitakyushu, 807-8555, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
- Center for the Research of Advanced Diagnosis and Therapy of Cancer, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
3
|
Guerrini-Rousseau L, Merlevede J, Denizeau P, Andreiuolo F, Varlet P, Puget S, Beccaria K, Blauwblomme T, Cabaret O, Hamzaoui N, Bourdeaut F, Faure-Conter C, Muleris M, Colas C, Adam de Beaumais T, Castel D, Rouleau E, Brugières L, Grill J, Debily MA. Glioma oncogenesis in the Constitutional mismatch repair deficiency (CMMRD) syndrome. Neurooncol Adv 2024; 6:vdae120. [PMID: 39233831 PMCID: PMC11372297 DOI: 10.1093/noajnl/vdae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Background Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition due to biallelic mutations in one of the mismatch repair (MMR) genes associated with early onset of cancers, especially high-grade gliomas. Our aim was to decipher the molecular specificities of these gliomas. Methods Clinical, histopathological, and whole exome sequencing data were analyzed in 12 children with genetically proven CMMRD and a high-grade glioma. Results PDL1 expression was present in immunohistochemistry in 50% of the samples. In 9 patients, the glioma harbored an ultra-hypermutated phenotype (104-635 coding single nucleotide variants (SNV) per Mb, median 204). Driver mutations in POLE and POLD1 exonuclease domains were described for 8 and 1 patients respectively and were always present in the mutation burst with the highest variant allele frequency (VAF). The mutational signatures were dominated by MMR-related ones and similar in the different mutation bursts of a same patient without subsequent enrichment of the mutation signatures with POL-driven ones. Median number of coding SNV with VAF above one of the driving polymerase mutation per Mb was 57 (17-191). Our findings suggest that somatic polymerase alterations does not entirely explain the ultra-hypermutant phenotype. SETD2, TP53, NF1, EPHB2, PRKDC, and DICER1 genes were frequently mutated with higher VAF than the deleterious somatic polymerase mutation. Conclusions CMMRD-associated gliomas have a specific oncogenesis that does not involve usual pathways and mutations seen in sporadic pediatric or adult glioblastomas. Frequent alterations in other pathways such as MAPK may suggest the use of other targeted therapies along with PD1 inhibitors.
Collapse
Affiliation(s)
- Lea Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jane Merlevede
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Felipe Andreiuolo
- Neuropathology and INSERM UMR1266 IMA-Brain, GHU-Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Pascale Varlet
- Neuropathology and INSERM UMR1266 IMA-Brain, GHU-Paris Psychiatry and Neuroscience, Sainte-Anne Hospital, Paris, France
| | - Stéphanie Puget
- Neurosurgery, Necker Hospital, Paris University, Paris, France
| | - Kevin Beccaria
- Neurosurgery, Necker Hospital, Paris University, Paris, France
| | | | - Odile Cabaret
- Department of Medical Genetics, Gustave Roussy, Villejuif, France
| | - Nadim Hamzaoui
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, APHP Centre Université de Paris, Paris, France
- Inserm UMR_S1016, Institut Cochin, Université de Paris, Paris, France
| | - Franck Bourdeaut
- Translational Research in Pediatric Oncology (RTOP), INSERM U830 Laboratory of Genetics and Biology of Cancers, SIREDO: Care, Innovation, and Research for Children, Adolescents and Young Adults with Cancer, Curie Institute, Paris University, Paris, France
| | - Cécile Faure-Conter
- Pediatric Hematology and Oncology Institute (IHOPE), Centre Leon Berard, Lyon, France
| | - Martine Muleris
- Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Chrystelle Colas
- Département de Génétique, Institut Curie, Université Paris Sciences Lettres, Paris, France
| | | | - David Castel
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Etienne Rouleau
- Department of Medical Genetics, Gustave Roussy, Villejuif, France
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jacques Grill
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie-Anne Debily
- Molecular Predictors and New Targets in Oncology, INSERM U981, Team "Genomics and Oncogenesis of pediatric Brain Tumors," Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Biologie, Université Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
4
|
Nafe R, Porto L, Samp PF, You SJ, Hattingen E. Adult-type and Pediatric-type Diffuse Gliomas : What the Neuroradiologist Should Know. Clin Neuroradiol 2023; 33:611-624. [PMID: 36941392 PMCID: PMC10449995 DOI: 10.1007/s00062-023-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/22/2023]
Abstract
The classification of diffuse gliomas into the adult type and the pediatric type is the new basis for the diagnosis and clinical evaluation. The knowledge for the neuroradiologist should not remain limited to radiological aspects but should be based additionally on the current edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). This classification defines the 11 entities of diffuse gliomas, which are included in the 3 large groups of adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas, and pediatric-type diffuse high-grade gliomas. This article provides a detailed overview of important molecular, morphological, and clinical aspects for all 11 entities, such as typical genetic alterations, age distribution, variability of the tumor localization, variability of histopathological and radiological findings within each entity, as well as currently available statistical information on prognosis and outcome. Important differential diagnoses are also discussed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | - Luciana Porto
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Patrick-Felix Samp
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Se-Jong You
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Elke Hattingen
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Labrousse G, Vande Perre P, Parra G, Jaffrelot M, Leroy L, Chibon F, Escudie F, Selves J, Hoffmann JS, Guimbaud R, Lutzmann M. The hereditary N363K POLE exonuclease mutant extends PPAP tumor spectrum to glioblastomas by causing DNA damage and aneuploidy in addition to increased mismatch mutagenicity. NAR Cancer 2023; 5:zcad011. [PMID: 36915289 PMCID: PMC10006997 DOI: 10.1093/narcan/zcad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 03/13/2023] Open
Abstract
The exonuclease domain of DNA polymerases epsilon's catalytic subunit (POLE) removes misincorporated nucleotides, called proofreading. POLE-exonuclease mutations cause colorectal- and endometrial cancers with an extreme burden of single nucleotide substitutions. We recently reported that particularly the hereditary POLE exonuclease mutation N363K predisposes in addition to aggressive giant cell glioblastomas. We knocked-in this mutation homozygously into human cell lines and compared its properties to knock-ins of the likewise hereditary POLE L424V mutation and to a complete proofreading-inactivating mutation (exo-null). We found that N363K cells have higher mutation rates as both L424V- or exo-null mutant cells. In contrast to L424V cells, N363K cells expose a growth defect, replication stress and DNA damage. In non-transformed cells, these burdens lead to aneuploidy but macroscopically normal nuclei. In contrast, transformed N363K cells phenocopy the enlarged and disorganized nuclei of giant cell glioblastomas. Taken together, our data characterize a POLE exonuclease domain mutant that not only causes single nucleotide hypermutation, but in addition DNA damage and chromosome instability, leading to an extended tumor spectrum. Our results expand the understanding of the polymerase exonuclease domain and suggest that an assessment of both the mutational potential and the genetic instability might refine classification and treatment of POLE-mutated tumors.
Collapse
Affiliation(s)
- Guillaume Labrousse
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
| | - Pierre Vande Perre
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Oncogenetics Department, Institute Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Genis Parra
- Center for Genomic Analysis, CNAG, Carrer de Baldiri Reixac 4, Barcelona, Spain
| | - Marion Jaffrelot
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Oncogenetics Department, Institute Claudius Regaud, IUCT-Oncopole, Toulouse, France
- Department of Digestive Oncology, IUCT Rangueil-Larrey, CHU de Toulouse, Toulouse, France
| | - Laura Leroy
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
| | - Frederic Chibon
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
| | - Frederic Escudie
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irene-Joliot-Curie, 31059Toulouse, France
| | - Janick Selves
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irene-Joliot-Curie, 31059Toulouse, France
| | - Jean-Sebastien Hoffmann
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Laboratoire d’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irene-Joliot-Curie, 31059Toulouse, France
| | - Rosine Guimbaud
- Oncogenetics Department, Institute Claudius Regaud, IUCT-Oncopole, Toulouse, France
- Department of Digestive Oncology, IUCT Rangueil-Larrey, CHU de Toulouse, Toulouse, France
| | - Malik Lutzmann
- Cancer Research Center of Toulouse, CRCT, 2 Avenue Hubert Curien, 31000Toulouse, France
- Institute of Human Genetics, IGH, UMR 9002, Centre National de la Recherche Scientifique, University of Montpellier, 34396Montpellier, France
| |
Collapse
|
6
|
Bonnett SA, Rosenbloom AB, Ong GT, Conner M, Rininger AB, Newhouse D, New F, Phan CQ, Ilcisin S, Sato H, Lyssand JS, Geiss G, Beechem JM. Ultra High-plex Spatial Proteogenomic Investigation of Giant Cell Glioblastoma Multiforme Immune Infiltrates Reveals Distinct Protein and RNA Expression Profiles. CANCER RESEARCH COMMUNICATIONS 2023; 3:763-779. [PMID: 37377888 PMCID: PMC10155752 DOI: 10.1158/2767-9764.crc-22-0396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 04/04/2023] [Indexed: 06/29/2023]
Abstract
A deeper understanding of complex biological processes, including tumor development and immune response, requires ultra high-plex, spatial interrogation of multiple "omes". Here we present the development and implementation of a novel spatial proteogenomic (SPG) assay on the GeoMx Digital Spatial Profiler platform with next-generation sequencing readout that enables ultra high-plex digital quantitation of proteins (>100-plex) and RNA (whole transcriptome, >18,000-plex) from a single formalin-fixed paraffin-embedded (FFPE) sample. This study highlighted the high concordance, R > 0.85 and <15% change in sensitivity between the SPG assay and the single-analyte assays on various cell lines and tissues from human and mouse. Furthermore, we demonstrate that the SPG assay was reproducible across multiple users. When used in conjunction with advanced cellular neighborhood segmentation, distinct immune or tumor RNA and protein targets were spatially resolved within individual cell subpopulations in human colorectal cancer and non-small cell lung cancer. We used the SPG assay to interrogate 23 different glioblastoma multiforme (GBM) samples across four pathologies. The study revealed distinct clustering of both RNA and protein based on pathology and anatomic location. The in-depth investigation of giant cell glioblastoma multiforme (gcGBM) revealed distinct protein and RNA expression profiles compared with that of the more common GBM. More importantly, the use of spatial proteogenomics allowed simultaneous interrogation of critical protein posttranslational modifications alongside whole transcriptomic profiles within the same distinct cellular neighborhoods. Significance We describe ultra high-plex spatial proteogenomics; profiling whole transcriptome and high-plex proteomics on a single FFPE tissue section with spatial resolution. Investigation of gcGBM versus GBM revealed distinct protein and RNA expression profiles.
Collapse
Affiliation(s)
| | | | | | - Mark Conner
- NanoString Technologies, Seattle, Washington
| | | | | | - Felicia New
- NanoString Technologies, Seattle, Washington
| | - Chi Q. Phan
- NanoString Technologies, Seattle, Washington
| | | | - Hiromi Sato
- NanoString Technologies, Seattle, Washington
| | | | - Gary Geiss
- NanoString Technologies, Seattle, Washington
| | | |
Collapse
|
7
|
Is Caperatic Acid the Only Compound Responsible for Activity of Lichen Platismatia glauca within the Nervous System? Antioxidants (Basel) 2022; 11:antiox11102069. [PMID: 36290793 PMCID: PMC9598164 DOI: 10.3390/antiox11102069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Lichens are a source of various biologically active compounds. However, the knowledge about them is still scarce, and their use in medicine is limited. This study aimed to investigate the therapeutic potential of the lichen Platismatia glauca and its major metabolite caperatic acid in regard to their potential application in the treatment of central nervous system diseases, especially neurodegenerative diseases and brain tumours, such as glioblastoma. First, we performed the phytochemical analysis of the tested P. glauca extracts based on FT-IR derivative spectroscopic and gas chromatographic results. Next the antioxidant properties were determined, and moderate anti-radical activity, strong chelating properties of Cu2+ and Fe2+ ions, and a mild effect on the antioxidant enzymes of the tested extracts and caperatic acid were proved. Subsequently, the influence of the tested extracts and caperatic acid on cholinergic transmission was determined by in vitro and in silico studies confirming that inhibitory effect on butyrylcholinesterase is stronger than against acetylcholinesterase. We also confirmed the anti-inflammatory properties of P. glauca extracts and caperatic acid using a COX-2 and hyaluronidase inhibition models. Moreover, our studies show the cytotoxic and pro-apoptotic activity of the P. glauca extracts against T98G and U-138 MG glioblastoma multiforme cell lines. In conclusion, it is possible to assume that P. glauca extracts and especially caperatic acid can be regarded as the source of the valuable substances to finding new therapies of central nervous system diseases.
Collapse
|
8
|
Orasanu CI, Aschie M, Deacu M, Mocanu L, Voda RI, Topliceanu TS, Cozaru GC. Morphogenetic and Imaging Characteristics in Giant Cell Glioblastoma. Curr Oncol 2022; 29:5316-5323. [PMID: 36005160 PMCID: PMC9406765 DOI: 10.3390/curroncol29080422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Giant cell glioblastoma is a rare tumor entity of IDH-wildtype glioblastoma. It is usually found in the pediatric population. We describe a particular case of a female patient diagnosed histopathologically with giant cell glioblastoma, who had two recurrences in different lobes of the same cerebral hemisphere, despite positive prognostic factors and appropriate treatment. We performed an immunohistochemical characterization of giant cell glioblastoma as well as an analysis of its aggressiveness using the cytogenetic markers TP53, CDKN2A, and TP73 using the FISH technique. The clinical picture was inconsistant, the suspicion being completely different initially. Paraclinical examination and imaging initially suggested a metastasis to the insular lobe. After surgery, histopathological and immunohistochemical examinations were the basis for the diagnosis. Despite the prognostic factors known so far in the literature, the aggressiveness denoted by multiple relapses and morphogenetic tests particularizes the case and improves the literature by bringing new information about this rare neoplasm of the central nervous system.
Collapse
Affiliation(s)
- Cristian Ionut Orasanu
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.A.); (M.D.); (L.M.); (R.I.V.); (G.C.C.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 900591 Constanta, Romania;
| | - Mariana Aschie
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.A.); (M.D.); (L.M.); (R.I.V.); (G.C.C.)
- Academy of Medical Sciences of Romania, 030167 Bucuresti, Romania
- Department of Pathology, Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Mariana Deacu
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.A.); (M.D.); (L.M.); (R.I.V.); (G.C.C.)
- Department of Pathology, Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Liliana Mocanu
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.A.); (M.D.); (L.M.); (R.I.V.); (G.C.C.)
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.A.); (M.D.); (L.M.); (R.I.V.); (G.C.C.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 900591 Constanta, Romania;
| | - Theodor Sebastian Topliceanu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, “Ovidius” University of Constanta, 900591 Constanta, Romania;
| | - Georgeta Camelia Cozaru
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.A.); (M.D.); (L.M.); (R.I.V.); (G.C.C.)
- Clinical Service of Pathology, Department of Genetics, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| |
Collapse
|
9
|
The evolution of pleomorphic xanthoastrocytoma: from genesis to molecular alterations and mimics. J Transl Med 2022; 102:670-681. [PMID: 35031693 DOI: 10.1038/s41374-021-00708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Pleomorphic xanthoastrocytomas (PXAs) are rare tumors accounting for less than 1% of astrocytomas. They commonly occur in young patients and have relatively favorable prognosis. However, they are well known to have heterogenous morphology and biological behavior with the potential to recur and disseminate throughout the central nervous system, especially their anaplastic counterparts. Recent advances in the molecular characterization have discovered BRAFp.V600E mutations in conjunction with CDKN2A/B deletions and TERTp mutations to be the most frequent alterations in PXAs. These tumors can present a diagnostic challenge as they share overlapping histopathological, genomic as well as methylation profile with various other tumor types, particularly epithelioid glioblastomas (eGBs). This review provides the spectrum of evolution of PXAs from their genesis to recent molecular insights and attempts to review pathogenesis and relationship to other tumors that they mimic especially eGB. It is postulated based on evidence from literature that PXA and eGB are possibly related and not distinct entities, being two ends of a continuous spectrum of malignant progression (grade 2-grade 4) with anaplastic PXA (grade 3) lying in between. Future WHO classifications will have to possibly redefine these tumors using more confirmatory data from larger studies.
Collapse
|
10
|
Kinoshita T, Yano H, Nakayama N, Suzui N, Iida T, Endo S, Yasue S, Ozeki M, Kobayashi K, Miyazaki T, Iwama T. Pediatric Giant Cell Glioblastoma Presenting with Intracranial Dissemination at Diagnosis: A Case Report. NMC Case Rep J 2022; 8:151-157. [PMID: 35079457 PMCID: PMC8769385 DOI: 10.2176/nmccrj.cr.2020-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
Giant cell glioblastoma (GCG) is a rare subtype of glioblastoma multiforme (GBM), and it often occurs in younger patients; however, its onset in children is extremely noticeable. A 7-year-old girl presented with a headache and restlessness. A giant tumor that was 7 cm in diameter was found by magnetic resonance imaging (MRI) in the left frontal lobe with intracranial dissemination. Because the tumor had extended to the lateral ventricles and occluded the foramen of Monro causing hydrocephalus, she underwent ventricular drainage and neuro-endoscopic biopsy from the left posterior horn of the lateral ventricle. The initial pathological diagnosis was an atypical teratoid/rhabdoid tumor (AT/RT). When the dissemination subsided after the first chemotherapy with vincristine, doxorubicin, and cyclophosphamide, she underwent the first tumor resection via a left frontal transcortical approach. After surgery, the second chemotherapy with ifosfamide, cisplatin, and etoposide was not effective for the residual tumor and intracranial dissemination. The second surgery via a transcallosal approach achieved nearly total resection leading to an improvement of the hydrocephalus. The definitive pathological diagnosis was GCG. Despite chemo-radiation therapy, the dissemination in the basal cistern reappeared and the hydrocephalus worsened. She was obliged to receive a ventriculo-peritoneal (VP) shunt and palliative care at home; however, her poor condition prevented her discharge. Ten months after admission, she died of tumor progression. The peritoneal dissemination was demonstrated by cytology of ascites. In conclusion, although unusual, pediatric GCG may be disseminated at diagnosis, in which case both tumor and hydrocephalus control need to be considered.
Collapse
Affiliation(s)
- Takamasa Kinoshita
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| | - Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan.,Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo, Gifu, Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| | - Natsuko Suzui
- Department of Pathology, Gifu University Hospital, Gifu, Gifu, Japan
| | - Tomohiro Iida
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| | - Saori Endo
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| | - Shiho Yasue
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| | - Michio Ozeki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| | | | | | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| |
Collapse
|
11
|
Paolillo M, Comincini S, Schinelli S. In Vitro Glioblastoma Models: A Journey into the Third Dimension. Cancers (Basel) 2021; 13:cancers13102449. [PMID: 34070023 PMCID: PMC8157833 DOI: 10.3390/cancers13102449] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, the thorny issue of glioblastoma models is addressed, with a focus on 3D in vitro models. In the first part of the manuscript, glioblastoma features and classification are recapitulated, in order to highlight the major critical aspects that should be taken into account when choosing a glioblastoma 3D model. In the second part of the review, the 3D models described in the literature are critically discussed, considering the advantages, disadvantages, and feasibility for each experimental model, in the light of the potential issues that researchers want to address. Abstract Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, with an average survival time of about one year from initial diagnosis. In the attempt to overcome the complexity and drawbacks associated with in vivo GBM models, together with the need of developing systems dedicated to screen new potential drugs, considerable efforts have been devoted to the implementation of reliable and affordable in vitro GBM models. Recent findings on GBM molecular features, revealing a high heterogeneity between GBM cells and also between other non-tumor cells belonging to the tumoral niche, have stressed the limitations of the classical 2D cell culture systems. Recently, several novel and innovative 3D cell cultures models for GBM have been proposed and implemented. In this review, we first describe the different populations and their functional role of GBM and niche non-tumor cells that could be used in 3D models. An overview of the current available 3D in vitro systems for modeling GBM, together with their major weaknesses and strengths, is presented. Lastly, we discuss the impact of groundbreaking technologies, such as bioprinting and multi-omics single cell analysis, on the future implementation of 3D in vitro GBM models.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Sergio Comincini
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Schinelli
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
12
|
Baker TG, Alden J, Dubuc AM, Welsh CT, Znoyko I, Cooley LD, Farooqi MS, Schwartz S, Li YY, Cherniack AD, Lindhorst SM, Gener M, Wolff DJ, Meredith DM. Near haploidization is a genomic hallmark which defines a molecular subgroup of giant cell glioblastoma. Neurooncol Adv 2020; 2:vdaa155. [PMID: 33392505 PMCID: PMC7764500 DOI: 10.1093/noajnl/vdaa155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Giant cell glioblastoma (gcGBM) is a rare histologic subtype of glioblastoma characterized by numerous bizarre multinucleate giant cells and increased reticulin deposition. Compared with conventional isocitrate dehydrogenase (IDH)-wildtype glioblastomas, gcGBMs typically occur in younger patients and are generally associated with an improved prognosis. Although prior studies of gcGBMs have shown enrichment of genetic events, such as TP53 alterations, no defining aberrations have been identified. The aim of this study was to evaluate the genomic profile of gcGBMs to facilitate more accurate diagnosis and prognostication for this entity. Methods Through a multi-institutional collaborative effort, we characterized 10 gcGBMs by chromosome studies, single nucleotide polymorphism microarray analysis, and targeted next-generation sequencing. These tumors were subsequently compared to the genomic and epigenomic profile of glioblastomas described in The Cancer Genome Atlas (TCGA) dataset. Results Our analysis identified a specific pattern of genome-wide massive loss of heterozygosity (LOH) driven by near haploidization in a subset of glioblastomas with giant cell histology. We compared the genomic signature of these tumors against that of all glioblastomas in the TCGA dataset (n = 367) and confirmed that our cohort of gcGBMs demonstrated a significantly different genomic profile. Integrated genomic and histologic review of the TCGA cohort identified 3 additional gcGBMs with a near haploid genomic profile. Conclusions Massive LOH driven by haploidization represents a defining molecular hallmark of a subtype of gcGBM. This unusual mechanism of tumorigenesis provides a diagnostic genomic hallmark to evaluate in future cases, may explain reported differences in survival, and suggests new therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Tiffany G Baker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jay Alden
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Adrian M Dubuc
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cynthia T Welsh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Iya Znoyko
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Linda D Cooley
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Midhat S Farooqi
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Stuart Schwartz
- Cytogenetics Laboratory, Laboratory Corporation of America® Holdings, Research Triangle Park, North Carolina, USA
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Scott M Lindhorst
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Melissa Gener
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David M Meredith
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Xue C, Zhang B, Deng J, Liu X, Li S, Zhou J. Differentiating Giant Cell Glioblastoma from Classic Glioblastoma With Diffusion-Weighted Imaging. World Neurosurg 2020; 146:e473-e478. [PMID: 33127573 DOI: 10.1016/j.wneu.2020.10.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Differential diagnosis of giant cell glioblastoma (GC) and classic glioblastoma (GBM) using conventional radiological modalities is difficult. This study aimed to use diffusion-weighted imaging (DWI) to distinguish GC from GBM and thereby improve the accuracy of preoperative assessment of patients with GB. METHODS The clinical, magnetic resonance imaging, and pathologic data of 12 patients with GC and 21 patients with GBM were retrospectively analyzed. Independent sample t tests were used to compare the minimum apparent diffusion coefficient (ADCmin) and the normalized apparent diffusion coefficients (nADC) of the 2 tumor types. Receiver operating curve (ROC) analysis was used to assess the diagnostic efficacy of ADCmin and nADC values. RESULTS Compared with that of the classic GBM group, the ADCmin (0.98 ± 0.14 vs. 0.80 ± 0.19×10-3 mm2/second, P = 0.007) and nADC (1.42 ± 0.25 vs. 1.17 ± 0.25, P = 0.011) of the GC group were significantly higher. ROC curve analysis showed that the maximum area under the curve of ADCmin and nADC were 0.800 ± 0.080 and 0.778 ± 0.082, respectively. The sensitivity, specificity, and accuracy distinguishing GC and classic GBM was best (83.33%, 76.19%, and 78.79%, respectively) when ADCmin = 0.84×10-3 mm2/second (maximum area under the ROC, 0.800). Its positive and negative predictive values under this condition were 88.89% and 66.67%, respectively. CONCLUSIONS By distinguishing GC from classic GBM, the ADCmin parameter of DWI can improve the accuracy of the preoperative differential diagnosis of the 2 tumor types.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
14
|
White-Gilbertson S, Voelkel-Johnson C. Giants and monsters: Unexpected characters in the story of cancer recurrence. Adv Cancer Res 2020; 148:201-232. [PMID: 32723564 DOI: 10.1016/bs.acr.2020.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyploid giant cancer cells (PGCC) constitute a dangerous subpopulation of cancer cells and are a driving force in cancer recurrence. These unique cells arise from diploid tumor cells in response to stress encountered in the tumor microenvironment or during cancer therapy. PGCC are greatly dedifferentiated, acquire pluripotency, and are able to replicate through a form of asymmetric division called neosis, which results in new populations that are themselves able to differentiate into new cell types or to re-establish tumors. Progeny tend to be more genetically unstable than the founding population due to the dysregulation required to transition through a PGCC state. Therefore, cancers that escape stressors through this mechanism tend to re-emerge with a more aggressive phenotype that is therapy resistant. This review focuses on the clinical significance of PGCC, the need for standardized nomenclature and molecular markers, as well as possible avenues to develop therapies aimed at PGCC and the process of neosis. The biology underlying the development of PGCC including cell cycle checkpoint dysregulation, stress responses, dedifferentiation, stemness and epithelial-mesenchymal transition is discussed.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
15
|
Sarhan AM. Brain Tumor Classification in Magnetic Resonance Images Using Deep Learning and Wavelet Transform. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/jbise.2020.136010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|