1
|
Havrilla CA, Bradford JB, Yackulic CB, Munson SM. Divergent climate impacts on
C
3
versus
C
4
grasses imply widespread 21st century shifts in grassland functional composition. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Caroline A. Havrilla
- Department of Forest and Rangeland Stewardship Colorado State University Fort Collins Colorado USA
| | - John B. Bradford
- U.S. Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Charles B. Yackulic
- U.S. Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Seth M. Munson
- U.S. Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| |
Collapse
|
2
|
Driving Climatic Factors at Critical Plant Developmental Stages for Qinghai–Tibet Plateau Alpine Grassland Productivity. REMOTE SENSING 2022. [DOI: 10.3390/rs14071564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Determining the driving climatic factors at critical periods and potential legacy effects is crucial for grassland productivity predictions on the Qinghai–Tibet Plateau (QTP). However, studies with limited and ex situ ground samples from highly heterogeneous alpine meadows brought great uncertainties. This study determined the key climatic factors at critical plant developmental stages and the impact of previous plant growth status for interannual aboveground net primary productivity (ANPP) variations in different QTP grassland types. We hypothesize that the impact of climatic factors on grassland productivity varies in different periods and different vegetation types, while its legacy effects are not great. Pixel-based partial least squares regression was used to associate interannual ANPP with precipitation and air temperature at different developmental stages and prior-year ANPP from 2000 to 2019 using remote sensing techniques. Results indicated different findings from previous studies. Precipitation at the reproductive stage (July–August) was the most prominent controlling factor for ANPP which was also significantly affected by precipitation and temperature at the withering (September–October) and dormant stage (November–February), respectively. The influence of precipitation was more significant in alpine meadows than in alpine steppes, while the differentiated responses to climatic factors were attributed to differences in water consumption at different developmental stages induced by leaf area changes, bud sprouting, growth, and protection from frost damage. The prior-year ANPP showed a non-significant impact on ANPP of current year, except for alpine steppes, and this impact was much less than that of current-year climatic factors, which may be attributed to the reduced annual ANPP variations related to the inter-annual carbon circulation of alpine perennial herbaceous plants and diverse root/shoot ratios in different vegetation types. These findings can assist in improving the interannual ANPP predictions on the QTP under global climate change.
Collapse
|
3
|
Grasslands Maintain Stability in Productivity Through Compensatory Effects and Dominant Species Stability Under Extreme Precipitation Patterns. Ecosystems 2021. [DOI: 10.1007/s10021-021-00706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Rigge M, Shi H, Postma K. Projected change in rangeland fractional component cover across the sagebrush biome under climate change through 2085. Ecosphere 2021. [DOI: 10.1002/ecs2.3538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Matthew Rigge
- U.S. Geological Survey (USGS) Earth Resources Observation and Science Center Sioux Falls South Dakota57198USA
| | - Hua Shi
- AFDS Sioux Falls South Dakota57198USA
| | | |
Collapse
|
5
|
|