1
|
Baranowska M, Behnke-Borowczyk J, Barzdajn W, Szmyt J, Korzeniewicz R, Łukowski A, Memišević-Hodžić M, Kartawik N, Kowalkowski W. Effects of nursery production methods on fungal community diversity within soil and roots of Abies alba Mill. Sci Rep 2023; 13:21284. [PMID: 38042872 PMCID: PMC10693611 DOI: 10.1038/s41598-023-48047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
The aim of this study was to elucidate how different nursery production methods influence the composition of and relationship between soil and root community levels of Abies alba. In the Międzylesie Forest District, we quantified the responses of samples of both community-level fine roots and surrounding soil to environmental changes evoked by various seedling production methods. Fungi levels were identified based on their ITS 1 region and 5.8 S rDNA component. Analysis was conducted using Illumina SBS technology, and the obtained sequences were compared with reference samples deposited in the UNITE. Chemical analysis of the soil was also performed. Different nursery production methods resulted in a strong decoupling in the responses of fungal community levels between soil and roots. Changes in growth conditions imposed by production methods were significant in determining species composition. We found differences in fungal communities among functional groups of samples. In the soil, the dominant species of mycorrhizal fungi were Tylospora asterophora, Amanita rubescens, and Russula ionochlora. Mycorrhizal fungi in roots included Tuber anniae, Thelephoraceae sp., and Acephala applanata. Specific soil substrate conditions significantly influenced fungal community composition, leading to an increase in abundance of mycorrhizal fungi, specifically T. anniae.
Collapse
Affiliation(s)
- Marlena Baranowska
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Jolanta Behnke-Borowczyk
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Władysław Barzdajn
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Janusz Szmyt
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Robert Korzeniewicz
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Adrian Łukowski
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Mirzeta Memišević-Hodžić
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000, Sarajevo, Bosnia and Herzegovina
| | - Natalia Kartawik
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland
| | - Wojciech Kowalkowski
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625, Poznan, Poland.
| |
Collapse
|
2
|
Barbour KM, Weihe C, Walters KE, Martiny JBH. Testing the contribution of dispersal to microbial succession following a wildfire. mSystems 2023; 8:e0057923. [PMID: 37747204 PMCID: PMC10654055 DOI: 10.1128/msystems.00579-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/28/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE Identifying the mechanisms underlying microbial community succession is necessary for predicting how microbial communities, and their functioning, will respond to future environmental change. Dispersal is one mechanism expected to affect microbial succession, yet the difficult nature of manipulating microorganisms in the environment has limited our understanding of its contribution. Using a dispersal exclusion experiment, this study isolates the specific effect of environmental dispersal on bacterial and fungal community assembly over time following a wildfire. The work demonstrates the potential to quantify dispersal impacts on soil microbial communities over time and test how dispersal might further interact with other assembly processes in response to environmental change.
Collapse
Affiliation(s)
- Kristin M. Barbour
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| | - Claudia Weihe
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| | | | - Jennifer B. H. Martiny
- Department of Ecology and Evolutionary Biology, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
3
|
Nelson AR, Narrowe AB, Rhoades CC, Fegel TS, Daly RA, Roth HK, Chu RK, Amundson KK, Young RB, Steindorff AS, Mondo SJ, Grigoriev IV, Salamov A, Borch T, Wilkins MJ. Wildfire-dependent changes in soil microbiome diversity and function. Nat Microbiol 2022; 7:1419-1430. [PMID: 36008619 PMCID: PMC9418001 DOI: 10.1038/s41564-022-01203-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/18/2022] [Indexed: 12/13/2022]
Abstract
Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.
Collapse
Affiliation(s)
- Amelia R Nelson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Eastern Regional Research Center, Agricultural Research Service, Wyndmoor, PA, USA
| | - Charles C Rhoades
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA
| | - Timothy S Fegel
- Rocky Mountain Research Station, U.S. Forest Service, Fort Collins, CO, USA
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Holly K Roth
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert B Young
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM, USA
| | - Andrei S Steindorff
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephen J Mondo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Asaf Salamov
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|