1
|
Salmerón-Villalobos J, Ramis-Zaldivar JE, Balagué O, Verdú-Amorós J, Celis V, Sábado C, Garrido M, Mato S, Uriz J, Ortega MJ, Gutierrez-Camino A, Sinnett D, Illarregi U, Carron M, Regueiro A, Galera A, Gonzalez-Farré B, Campo E, Garcia N, Colomer D, Astigarraga I, Andrés M, Llavador M, Martin-Guerrero I, Salaverria I. Diverse mutations and structural variations contribute to Notch signaling deregulation in paediatric T-cell lymphoblastic lymphoma. Pediatr Blood Cancer 2022; 69:e29926. [PMID: 36000950 DOI: 10.1002/pbc.29926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm closely related to T-cell acute lymphoblastic leukaemia (T-ALL). Despite their similarities, and contrary to T-ALL, studies on paediatric T-LBL are scarce and, therefore, its molecular landscape has not yet been fully elucidated. Thus, the aims of this study were to characterize the genetic and molecular heterogeneity of paediatric T-LBL and to evaluate novel molecular markers differentiating this entity from T-ALL. PROCEDURE Thirty-three paediatric T-LBL patients were analyzed using an integrated approach, including targeted next-generation sequencing, RNA-sequencing transcriptome analysis and copy-number arrays. RESULTS Copy number and mutational analyses allowed the detection of recurrent homozygous deletions of 9p/CDKN2A (78%), trisomy 20 (19%) and gains of 17q24-q25 (16%), as well as frequent mutations of NOTCH1 (62%), followed by the BCL11B (23%), WT1 (19%) and FBXW7, PHF6 and RPL10 genes (15%, respectively). This genetic profile did not differ from that described in T-ALL in terms of mutation incidence and global genomic complexity level, but unveiled virtually exclusive 17q25 gains and trisomy 20 in T-LBL. Additionally, we identified novel gene fusions in paediatric T-LBL, including NOTCH1-IKZF2, RNGTT-SNAP91 and DDX3X-MLLT10, the last being the only one previously described in T-ALL. Moreover, clinical correlations highlighted the presence of Notch pathway alterations as a factor related to favourable outcome. CONCLUSIONS In summary, the genomic landscape of paediatric T-LBL is similar to that observed in T-ALL, and Notch signaling pathway deregulation remains the cornerstone in its pathogenesis, including not only mutations but fusion genes targeting NOTCH1.
Collapse
Affiliation(s)
- Julia Salmerón-Villalobos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Joan Enric Ramis-Zaldivar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | | | - Verónica Celis
- Paediatric Oncology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Constantino Sábado
- Paediatric Oncology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Marta Garrido
- Anatomic Pathology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Sara Mato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Javier Uriz
- Paediatric Oncohaematology Department, Donostia University Hospital, Biodonostia Health Research Institute, San Sebastian, Spain
| | - M José Ortega
- Paediatric Oncology Department, Hospital Universitario Virgen de la Nieves, Granada, Spain
| | | | - Daniel Sinnett
- Division of Haematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Canada.,Department of Paediatrics, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Unai Illarregi
- Genetics, Physics Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, Leioa, Spain
| | - Máxime Carron
- Division of Haematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Canada
| | - Alexandra Regueiro
- Paediatric Haematology and Oncology Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Galera
- Paediatric Oncohaematology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Blanca Gonzalez-Farré
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Noelia Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Itziar Astigarraga
- Paediatric Department, Osakidetza, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain.,Paediatric Department, Universidad del Pais Vasco UPV/EHU, Leioa, Spain
| | - Mara Andrés
- Paediatric Oncology Department, Hospital La Fe, Valencia, Spain
| | | | - Idoia Martin-Guerrero
- Biocruces Bizkaia Health Research Institute, Department of Genetics, Physical Anthropology & Animal Physiology, Science and Technology Faculty, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| |
Collapse
|
5
|
Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J, Robbins PF, Peng PD, Shen X, Gomes TJ, Dunbar CE, Munroe DJ, Stewart C, Cornetta K, Wangsa D, Ried T, Rosenberg SA, Morgan RA. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 2007; 109:5168-77. [PMID: 17353346 PMCID: PMC1890824 DOI: 10.1182/blood-2006-06-029173] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8(+) T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus-based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28(-), CD45RA(-), CD45RO(+), and CD62L(-), a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen-specific T-cell receptors, the clone secreted IFN-gamma upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15R alpha expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation.
Collapse
Affiliation(s)
- Cary Hsu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|