1
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
2
|
Tjust AE, Hellman U, Giannopoulos A, Winsnes A, Strigård K, Gunnarsson U. Evaluation of Extracellular Matrix Remodeling in Full-thickness Skin Grafts in Mice. J Histochem Cytochem 2024; 72:79-94. [PMID: 38264898 PMCID: PMC10851880 DOI: 10.1369/00221554231225995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Abdominal hernia is a protruding weakness in the abdominal wall. It affects abdominal strength and life quality and can lead to complications due to intestinal entrapment. Autologous full-thickness skin graft (FTSG) has recently become an alternative material for reinforcement in the surgical repair of large abdominal hernias instead of synthetic mesh. FTSG eventually integrates with the abdominal wall, but the long-term fate of the graft itself is not fully understood. This has implications as to how these grafts should be optimally used and handled intraoperatively. This study investigates the remodeling of FTSG in either the onlay or the intraperitoneal position 8 weeks after FTSG transplantation in an experimental mouse model. There was a significant presence of fibroblasts, indicated by vimentin and S100A4 staining, but there were significant variations among animals as to how much of the graft had been remodeled into dense connective tissue. This correlated significantly with the proportion of vimentin-positive cells in the dense connective tissue. We also found that collagen hybridizing peptide staining intensity, a marker of active remodeling, was significantly associated with the proportion of S100A4-positive cells in the dense connective tissue of the FTSG.
Collapse
Affiliation(s)
- Anton Erik Tjust
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Antonios Giannopoulos
- Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Annika Winsnes
- Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Karin Strigård
- Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Ulf Gunnarsson
- Surgery, Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Holmdahl V, Strigård K, Gunnarsson U. Autologous full-thickness skin in the repair of complex ventral hernias: an innovative step into the future of complex hernia repair? Front Surg 2023; 10:1301702. [PMID: 38162093 PMCID: PMC10754975 DOI: 10.3389/fsurg.2023.1301702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
The repair of complex ventral hernias, such as giant incisional or parastomal hernia, is associated with a high risk for complications and recurrence. Some serious complications are related to implantation of synthetic mesh as reinforcement material. Autologous full-thickness skin graft (FTSG) as reinforcement material in the repair of these complex hernias may offer a safe alternative. This is a review of the history of FTSG use in hernia surgery and the experiences of our research group regarding its application over the last decade. The results of FTSG used in the repair of giant ventral hernias are promising, and this method may already be recommended in selected cases. We have also conducted a translational chain of preclinical studies, based on a murine model, to gain a greater understanding of the behaviour of FTSG implanted in various positions in the abdominal wall. The use of intraperitoneal FTSG as reinforcement material in parastomal hernia repair is currently being evaluated in a randomised, controlled, multicentre study.
Collapse
|