1
|
Kido J, Sugawara K, Tavoulari S, Makris G, Rüfenacht V, Nakamura K, Kunji ERS, Häberle J. Deciphering the Mutational Background in Citrin Deficiency Through a Nationwide Study in Japan and Literature Review. Hum Mutat 2025; 2025:9326326. [PMID: 40309478 PMCID: PMC12041640 DOI: 10.1155/humu/9326326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/24/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Citrin deficiency (CD) is an autosomal recessive disorder caused by the absence or dysfunction of the mitochondrial transporter citrin, resulting from mutations in SLC25A13. The disease presents with age-dependent clinical manifestations: neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia by CD (FTTDCD), and an adult-onset form (formerly called Type II citrullinemia, CTLN2, recently renamed to "adolescent and adult citrin deficiency," AACD). We performed this study to compile known genotypes found in CD patients and investigate their impact on the clinical course. Through a nationwide survey in Japan as well as a literature review, we collected information regarding 68 genetic variants of a total of 345 patients with CD (285 NICCD, 19 post-NICCD, and 41 AACD). In this cohort, the pathogenic variants, arising from nonsense, insertion/deletion, and splice site mutations, are expected to have severe functional or biogenesis defects. Of 82 alleles in patients with AACD, the two most common variants, c.852_855del and c.1177+1G>A, accounted for 25 alleles (30.5%) and 15 alleles (18.3%), respectively. The c.852_855del variant, even when present as part of compound heterozygosity, often presented with hyperammonemia (≥ 180 μmol/L), cognitive impairment, short stature (< -2SD), liver cirrhosis, and pancreatitis, with some patients requiring liver transplantation. In conclusion, certain SLC25A13 genotypes are particularly frequent, especially those that result in severely truncated citrin proteins with often a significant impact on the clinical outcome of the patient. The most prevalent variant is c.852_855del, which was found in 42% (128/304) of NICCD/post-NICCD cases and 49% (20/41) of AACD patients.
Collapse
Affiliation(s)
- Jun Kido
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Georgios Makris
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Ow JR, Imagawa E, Chen F, Cher WY, Chan SYT, Gurrampati RR, Ramadass V, Loke MF, Tabaglio T, Nishida H, Tsunogai T, Yazaki M, Ch'ng GS, Lakshmanan M, Lee SS, Ying JY, Guccione E, Oishi K, Wee KB. Developing splice-switching oligonucleotides for urea cycle disorder using an integrated diagnostic and therapeutic platform. J Hepatol 2025:S0168-8278(25)00083-2. [PMID: 39978599 DOI: 10.1016/j.jhep.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUNDS & AIMS Citrin deficiency (CD) is an autosomal recessive urea cycle disorder caused by biallelic loss-of-function variants in the SLC25A13 gene, leading to life-threatening hyperammonemia and hypoglycemia. Variants in deep introns can cause genetic diseases by altering splicing and are often missed by current diagnostic tools. Splice-switching oligonucleotides (SSOs) can resolve certain intronic variants, but patients harboring such variants need to be identified. We present a lean workflow from molecular diagnostics to SSO development to resolve splice-altering variants in deep introns that is applicable to other genetic disorders. METHODS A deep intronic-gene panel was designed to identify deep intronic variants. SSOs were then developed and validated in vitro using a minigene assay and induced hepatocytes, and target engagement was verified in vivo by hydrodynamic tail vein injection of minigenes and SSOs. RESULTS With the deep intronic-gene panel and RNA analysis, we identified a novel SLC25A13 c.469-2922G>T variant that promotes the inclusion of a premature stop codon-containing pseudo-exon, SLC25A13-PE5, thereby causing CD. By a stepwise rational SSO design approach, we identified potent candidates inhibiting SLC25A13-PE5 at EC50 <2 nM in vitro. Upon conjugating the SSOs with GalNAc (N-acetylgalactosamine), they were validated to rescue normal protein expression and restore ureagenesis and ammonia clearance, key urea cycle functions, in patient-derived induced hepatocytes. In vivo on-target efficacy of the clinical GalNAc-SSO candidate, in the absence of acute toxicity and inflammation, was observed in a mouse model with exogenous hepatic minigene expression. CONCLUSIONS Our data validates a platform to redefine the molecular diagnosis of urea cycle disorders and provides proof-of-concept for a precision therapy for patients with CD, for whom the only effective treatment is liver transplantation. IMPACT AND IMPLICATIONS Deep intronic variants are common causes of genetic diseases that are commonly neglected. In this study, we demonstrate an integrated precision diagnostic and therapeutic approach for urea cycle disorders. Specifically, we focus on citrin deficiency, going from the discovery of a novel splice variant in the SLC25A13 gene with our novel deep intronic-gene panel for urea cycle disorders, to the development and in vivo validation of an efficacious splice-switching oligonucleotide candidate for the pathogenic splice variant. We envision the possibility of extrapolating this pipeline to the diagnosis and development of treatments for other rare genetic diseases.
Collapse
Affiliation(s)
- Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Eri Imagawa
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Feng Chen
- King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
| | - Wei Yuan Cher
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Shermin Yu Tung Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Rajasekhar Reddy Gurrampati
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Venkataramanan Ramadass
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | | | - Tommaso Tabaglio
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Hikaru Nishida
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshiki Tsunogai
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahide Yazaki
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Gaik Siew Ch'ng
- Department of Genetics, Penang General Hospital, Penang, Malaysia
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Su Seong Lee
- Department of Bioengineering and Nanomedicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Jackie Y Ying
- Department of Bioengineering and Nanomedicine, King Faisal Specialist Hospital & Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia; Department of Bioengineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Kimihiko Oishi
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Keng Boon Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore.
| |
Collapse
|
3
|
Li J, Duan J, He S, Li Y, Wang M, Deng C. Biochemical characteristics, genetic variants and treatment outcomes of 55 Chinese cases with neonatal intrahepatic cholestasis caused by citrin deficiency. Front Pediatr 2025; 12:1293356. [PMID: 39872914 PMCID: PMC11769942 DOI: 10.3389/fped.2024.1293356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Background The diagnostic criteria of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) have not been established due to non-specific clinical manifestations, and our understanding on the treatment outcome is still limited. We aim to investigate the biochemical characteristics, genetic variants, and treatment outcome of NICCD patients. Methods We compared the nutritional status and biochemical characteristics of 55 NICCD infants and 27 idiopathic neonatal cholestasis (INC) infants. SLC25A13 gene variant analysis was performed for definitive diagnosis of NICCD. NICCD infants received 12 months of lactose-free and/or medium-chain triglyceride-enriched (LF/MCT) formula treatment. The treatment efficacy was evaluated by comparing the outcome of NICCD with the 24 healthy infants that were selected as normal controls. All NICCD patients were followed up until death or at least 1 year of age. Results Compared to INC group, significant increase was found in levels of total bilirubin, indirect bilirubin, total bile acid, gamma-glutamyl transpeptidase, alkaline phosphatase, prothrombin time, thrombin time, international normalized ratio, alpha-fetoprotein (AFP), Vitamin D, and Vitamin E of NICCD group, while alanine aminotransferase, albumin, fibrinogen, glucose, and Vitamin A levels showed significant decrease in the NICCD group (P < 0.05). There were 7 novel variants among 19 SLC25A13 variant types. No significant differences were found between NICCD patients treated for 12 months and normal controls. In long term follow-up, 2 cases developed FTTDCD, 8 cases had special dietary habits, and 1 case died from cirrhosis. Conclusions NICCD showed more severe impairments in liver, coagulation, and metabolic function than INC. Significantly increased AFP levels could provide reference for the differential diagnosis of NICCD. The newly discovered variants may be meaningful for the individualized treatment of NICCD patients. LF/MCT formula was recommended for NICCD patients.
Collapse
Affiliation(s)
- Juan Li
- Department of Gastroenterology, Kunming Children’s Hospital, Kunming, China
| | - Jintao Duan
- Department of Gastroenterology, Kunming Children’s Hospital, Kunming, China
| | - Shuli He
- Department of Gastroenterology, Kunming Children’s Hospital, Kunming, China
| | - Ying Li
- Department of Gastroenterology, Kunming Children’s Hospital, Kunming, China
| | - Meifen Wang
- Department of Infectious Diseases, Kunming Children’s Hospital, Kunming, China
| | - Chengjun Deng
- Department of Gastroenterology, Kunming Children’s Hospital, Kunming, China
| |
Collapse
|
4
|
Wang P, Hu L, Chen Y, Zhou D, Zhu S, Zhang T, Cen Z, He Q, Wu B, Huang X. Enhancing newborn screening sensitivity and specificity for missed NICCD using selected amino acids and acylcarnitines. Orphanet J Rare Dis 2025; 20:17. [PMID: 39799340 PMCID: PMC11724517 DOI: 10.1186/s13023-025-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025] Open
Abstract
PURPOSE To enhance the detection rate of Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) through newborn screening (NBS), we analyzed the metabolic profiles of missed patients and proposed a more reliable method for early diagnosis. METHODS In this retrospective study, NICCD patients were classified into "Newborn Screening" (64 individuals) and "Missed Screening" (52 individuals) groups. Metabolic profiles were analyzed using the non-derivatized MS/MS Kit, and genetic mutations were identified via next-generation sequencing and confirmed by Sanger sequencing. Receiver Operating Characteristic (ROC) analysis evaluated the predictive value of amino acids and acylcarnitines in dried blood spots (DBS) for identifying missed patients including 40 missed patients and 17,269 healthy individuals, with additional validation using 12 missed patients and 454 healthy controls. RESULTS The age of diagnosis was significantly higher in the "Missed Screening" group compared to the "Newborn Screening" group (74.50 vs. 18.00 days, P < 0.001). ROC analysis revealed that citrulline had excellent diagnostic accuracy for missed patients, with an AUC of 0.970 and a cut-off value of 17.57 µmol/L. Additionally, glycine, phenylalanine, ornithine, and C8 were significant markers, each with an AUC greater than 0.70. A combination of these markers achieved an AUC of 0.996 with a cut-off value of 0.00195. Validation demonstrated a true positive rate of 91.67% and a true negative rate of 96.48%. Common SLC25A13 mutations in both groups were c.852_855del, IVS16ins3kb, and c.615 + 5G > A. CONCLUSIONS Combining multiple metabolic markers during NBS significantly improves sensitivity and specificity for detecting missed NICCD cases. However, the relationship between genetic mutations and missed cases remains unclear.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yuhe Chen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shasha Zhu
- Department of Pediatric Health, Taizhou Women and Children's Hospital, Taizhou, 318000, Zhejiang, China
| | - Ting Zhang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Ziyan Cen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Qimin He
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China.
| | - Benqing Wu
- Children's Medical Center, University of the Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
5
|
Kido J, Makris G, Santra S, Häberle J. Clinical landscape of citrin deficiency: A global perspective on a multifaceted condition. J Inherit Metab Dis 2024; 47:1144-1156. [PMID: 38503330 PMCID: PMC11586594 DOI: 10.1002/jimd.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024]
Abstract
Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in SLC25A13. The clinical manifestation is very variable and comprises three types: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD: OMIM 605814), post-NICCD including failure to thrive and dyslipidemia caused by citrin deficiency, and adult-onset type II citrullinemia (CTLN2: OMIM 603471). Frequently, NICCD can run with a mild clinical course and manifestations may resolve in the post-NICCD. However, a subset of patients may develop CTLN2 when they become more than 18 years old, and this condition is potentially life-threatening. Since a combination of diet with low-carbohydrate and high-fat content supplemented with medium-chain triglycerides is expected to ameliorate most manifestations and to prevent the progression to CTLN2, early detection and intervention are important and may improve long-term outcome in patients. Moreover, infusion of high sugar solution and/or glycerol may be life-threatening in patients with citrin deficiency, particularly CTLN2. The disease is highly prevalent in East Asian countries but is more and more recognized as a global entity. Since newborn screening for citrin deficiency has only been introduced in a few countries, the diagnosis still mainly relies on clinical suspicion followed by genetic testing or selective metabolic screening. This paper aims at describing (1) the different stages of the disease focusing on clinical aspects; (2) the current published clinical situation in East Asia, Europe, and North America; (3) current efforts in increasing awareness by establishing management guidelines and patient registries, hereby illustrating the ongoing development of a global network for this rare disease.
Collapse
Affiliation(s)
- Jun Kido
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
- Department of Pediatrics, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of PediatricsKumamoto University HospitalKumamotoJapan
| | - Georgios Makris
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| | - Saikat Santra
- Department of Clinical Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| |
Collapse
|
6
|
Okano M, Yasuda M, Shimomura Y, Matsuoka Y, Shirouzu Y, Fujioka T, Kyo M, Tsuji S, Kaneko K, Hitomi H. Citrin-deficient patient-derived induced pluripotent stem cells as a pathological liver model for congenital urea cycle disorders. Mol Genet Metab Rep 2024; 40:101096. [PMID: 38872960 PMCID: PMC11170474 DOI: 10.1016/j.ymgmr.2024.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Citrin deficiency is a congenital secondary urea cycle disorder lacking useful disease models for effective treatment development. In this study, human induced pluripotent stem cells (iPSCs) were generated from two patients with citrin deficiency and differentiated into hepatocyte-like cells (HLCs). Citrin-deficient HLCs produced albumin and liver-specific markers but completely lacked citrin protein and expressed argininosuccinate synthase only weakly. In addition, ammonia concentrations in a medium cultured with citrin-deficient HLCs were higher than with control HLCs. Sodium pyruvate administration significantly reduced ammonia concentrations in the medium of citrin-deficient HLCs and slightly reduced ammonia in HLCs differentiated from control iPSCs, though this change was not significant. Our results suggest that sodium pyruvate may be an efficient treatment for patients with citrin deficiency. Citrin-deficient iPSCs are a pathological liver model for congenital urea cycle disorders to clarify pathogenesis and develop novel therapies.
Collapse
Affiliation(s)
- Mai Okano
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Masahiro Yasuda
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Yui Shimomura
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Yasumasa Shirouzu
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Tatsuya Fujioka
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| | - Masatoshi Kyo
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Osaka, Japan
| | - Hirofumi Hitomi
- Department of iPS Stem Cell Regenerative Medicine, Kansai Medical University, Osaka, Japan
| |
Collapse
|
7
|
Hayasaka K. Pathogenesis and Management of Citrin Deficiency. Intern Med 2024; 63:1977-1986. [PMID: 37952953 PMCID: PMC11309867 DOI: 10.2169/internalmedicine.2595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Japan
| |
Collapse
|
8
|
Inui A, Ko JS, Chongsrisawat V, Sibal A, Hardikar W, Chang MH, Treepongkaruna S, Arai K, Kim KM, Chen HL. Update on the diagnosis and management of neonatal intrahepatic cholestasis caused by citrin deficiency: Expert review on behalf of the Asian Pan-Pacific Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2024; 78:178-187. [PMID: 38374571 DOI: 10.1002/jpn3.12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 02/21/2024]
Abstract
Citrin deficiency is an autosomal recessive metabolic liver disease caused by mutations in the SLC25A13 gene. The disease typically presents with cholestasis, elevated liver enzymes, hyperammonemia, hypercitrullinemia, and fatty liver in young infants, resulting in a phenotype known as "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD). The diagnosis relies on clinical manifestation, biochemical evidence of hypercitrullinemia, and identifying mutations in the SLC25A13 gene. Several common mutations have been found in patients of East Asian background. The mainstay treatment is nutritional therapy in early infancy utilizing a lactose-free and medium-chain triglyceride formula. This approach leads to the majority of patients recovering liver function by 1 year of age. Some patients may remain asymptomatic or undiagnosed, but a small proportion of cases can progress to cirrhosis and liver failure, necessitating liver transplantation. Recently, advancements in newborn screening methods have improved the age of diagnosis. Early diagnosis and timely management improve patient outcomes. Further studies are needed to elucidate the long-term follow-up of NICCD patients into adolescence and adulthood.
Collapse
Affiliation(s)
- Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamshi Tobu Hospital, Yokohama, Japan
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Voranush Chongsrisawat
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Winita Hardikar
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Australia
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
| | - Suporn Treepongkaruna
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Katsuhiro Arai
- Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, Taipei, Taiwan
- Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Komatsu M, Tanaka N, Kimura T, Yazaki M. Citrin Deficiency: Clinical and Nutritional Features. Nutrients 2023; 15:2284. [PMID: 37242166 PMCID: PMC10224054 DOI: 10.3390/nu15102284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
SLC25A13 gene mutations are responsible for diseases related to citrin deficiency (CD), such as neonatal intrahepatic cholestasis caused by citrin deficiency and adult-onset type II citrullinemia (CTLN2). From childhood to adulthood, CD patients are apparently healthy due to metabolic compensation with peculiar dietary habits-disliking high-carbohydrate foods and liking fat and protein-rich foods. Carbohydrate overload and alcohol consumption may trigger the sudden onset of CTLN2, inducing hyperammonemia and consciousness disturbance. Well-compensated asymptomatic CD patients are sometimes diagnosed as having non-obese (lean) non-alcoholic fatty liver disease and steatohepatitis, which have the risk of developing into liver cirrhosis and hepatocellular carcinoma. CD-induced fatty liver demonstrates significant suppression of peroxisome proliferator-activated receptor α and its downstream enzymes/proteins involved in fatty acid transport and oxidation and triglyceride secretion as a very low-density lipoprotein. Nutritional therapy is an essential and important treatment of CD, and medium-chain triglycerides oil and sodium pyruvate are useful for preventing hyperammonemia. We need to avoid the use of glycerol for treating brain edema by hyperammonemia. This review summarizes the clinical and nutritional features of CD-associated fatty liver disease and promising nutritional interventions.
Collapse
Affiliation(s)
- Michiharu Komatsu
- Department of Gastroenterology, Suwa Red Cross Hospital, Suwa 392-8510, Nagano, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Nagano, Japan
- International Relations Office, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Nagano, Japan
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Masahide Yazaki
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Nagano, Japan
| |
Collapse
|
10
|
Nguyen MHT, Nguyen AHP, Ngo DN, Nguyen PMT, Tang HS, Giang H, Lu YT, Nguyen HN, Tran MD. The mutation spectrum of SLC25A13 gene in citrin deficiency: identification of novel mutations in Vietnamese pediatric cohort with neonatal intrahepatic cholestasis. J Hum Genet 2023; 68:305-312. [PMID: 36599957 DOI: 10.1038/s10038-022-01112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Citrin deficiency (CD), a disorder caused by mutations in the SLC25A13 gene, may result in neonatal intrahepatic cholestasis. This study was purposely to explore the mutation spectrum of SLC25A13 gene in Vietnamese CD patients. METHODS The 292 unrelated CD patients were first screened for four high-frequency mutations by PCR/PCR-RFLP. Then, Sanger sequencing was performed directly for heterozygous or undetected patients. Novel mutations identified would need to be confirmed by their parents. RESULTS 12 pathogenic SLC25A13 mutations were identified in all probands, including three deletions c.851_854del (p.R284Rfs*3), c.70-63_133del (p.Y24_72Ifs*10), and c.[1956C>A;1962del] (p.[N652K;F654Lfs*45]), two splice-site mutations (IVS6+5G>A and IVS11+1G>A), one nonsense mutations c.1399C>T (p.R467*), one duplication mutation c.1638_1660dup (p.A554fs*570), one insertion IVSl6ins3kb (p.A584fs*585), and four missense mutation c.2T>C (p.M1T), c.1231G>A (p.V411M), c.1763G>A (p.R588Q), and c.135G>C (p.L45F). Among them, c.851_854del (mut I) was the most identified mutant allele (91.78%) with a total of 247 homozygous and 42 heterozygous genotypes of carriers. Interestingly, two novel mutations were identified: c.70-63_133del (p.Y24_72Ifs*10) and c.[1956C>A;1962del] (p.[N652K;F654Lfs*45]). CONCLUSION The SLC25A13 mutation spectrum related to intrahepatic cholestasis infants in Vietnam revealed a quite similar pattern to Asian countries' reports. This finding supports the use of targeted SLC25A13 mutation for CD screening in Vietnam and contributed to the SLC25A13 mutation spectra worldwide. It also helps emphasize the role of DNA analysis in treatment, genetic counseling, and prenatal diagnosis.
Collapse
Affiliation(s)
| | | | - Diem-Ngoc Ngo
- Human Genetics Department, National Children's Hospital, Hanoi, Vietnam
| | | | - Hung-Sang Tang
- Gene Solutions, Ho Chi Minh City, Vietnam.,Medical Genetics Institutes, Ho Chi Minh City, Vietnam
| | - Hoa Giang
- Gene Solutions, Ho Chi Minh City, Vietnam.,Medical Genetics Institutes, Ho Chi Minh City, Vietnam
| | - Y-Thanh Lu
- Medical Genetics Institutes, Ho Chi Minh City, Vietnam
| | - Hoai-Nghia Nguyen
- Medical Genetics Institutes, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Minh-Dien Tran
- Human Genetics Department, National Children's Hospital, Hanoi, Vietnam.,Hepatology Department, National Children's Hospital, Hanoi, Vietnam
| |
Collapse
|
11
|
Wang K, Zou B, Chen F, Zhang J, Huang Z, Shu S. Case report: Three novel variants on SLC25A13 in four infants with neonatal intrahepatic cholestasis caused by citrin deficiency. Front Pediatr 2023; 11:1103877. [PMID: 37063661 PMCID: PMC10090684 DOI: 10.3389/fped.2023.1103877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 04/18/2023] Open
Abstract
Background Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a common clinical phenotype of citrin deficiency in infants. Its phenotype is atypical, so genetic testing is quite necessary for the diagnosis. Case presentation We report 4 patients with jaundice and low body weight. Furthermore, the biochemical examination of all showed abnormal liver function and metabolic changes. DNA samples of the patients were extracted and subjected to genetic screening. All candidate pathogenic variants were validated by Sanger sequencing, and CNVs were ascertained by qPCR. The genetic screening revealed 6 variants in 4 patients, and all patients carried compound heterozygous variants of SLC25A13. Importantly, 3 variants were newly discovered: a nonsense mutation in exon17 (c.1803C > G), a frameshift mutation in exon 11(c.1141delG) and a deletion of the whole exon11. Thus, four NICCD patients were clearly caused by variants of SLC25A13. Biochemical indicators of all patients gradually returned to normal after dietary adjustment. Conclusions Our study clarified the genetic etiology of the four infants, expanded the variant spectrum of SLC25A13, and provided a basis for genetic counseling of the family. Early diagnosis and intervention should be given to patients with NICCD.
Collapse
|
12
|
Dericquebourg A, Fretigny M, Chatron N, Tardy B, Zawadzki C, Chambost H, Vinciguerra C, Jourdy Y. Whole F9 gene sequencing identified deep intronic variations in genetically unresolved hemophilia B patients. J Thromb Haemost 2022; 21:828-837. [PMID: 36696202 DOI: 10.1016/j.jtha.2022.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/20/2022] [Accepted: 12/02/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The disease-causative variant remains unidentified in approximately 0.5% to 2% of hemophilia B patients using conventional genetic investigations, and F9 deep intronic variations could be responsible for these phenotypes. OBJECTIVES This study aimed to characterize deep intronic variants in hemophilia B patients for whom genetic investigations failed. METHODS We performed whole F9 sequencing in 17 genetically unsolved hemophilia B patients. The pathogenic impact of the candidate variants identified was studied using both in silico analysis (MaxEntScan and spliceAI) and minigene assay. RESULTS In total, 9 candidate variants were identified in 15 patients; 7 were deep intronic substitutions and 2 corresponded to insertions of mobile elements. The most frequent variants found were c.278-1806A>C and the association of c.278-1244A>G and c.392-864T>G, identified in 4 and 6 unrelated individuals, respectively. In silico analysis predicted splicing impact for 4 substitutions (c.278-1806A>C, c.392-864T>G, c.724-2385G>T, c.723+4297T>A). Minigene assay showed a deleterious splicing impact for these 4 substitutions and also for the c.278-1786_278-1785insLINE. In the end, 5 variants were classified as likely pathogenic using the American College of Medical Genetics and Genomics guidelines, and 4 as of unknown significance. Thus, the hemophilia B-causing variant was identified in 13/17 (76%) families. CONCLUSION We elucidated the causing defect in three-quarters of the families included in this study, and we reported new F9 deep intronic variants that can cause hemophilia B.
Collapse
Affiliation(s)
- Amy Dericquebourg
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Mathilde Fretigny
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Brigitte Tardy
- Hémostase clinique-CRC hémophilie, Saint Etienne, France
| | - Christophe Zawadzki
- Pôle de Biologie Pathologie Génétique, Institut d'Hématologie -Transfusion, CHU Lille, Lille, France
| | - Hervé Chambost
- Department of Pediatric Hematology, Immunology, and Oncology, APHM, La Timone Children's Hospital, Marseille, France; INSERM, INRAe, C2VN, Aix Marseille Univ, Marseille, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Yohann Jourdy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France.
| |
Collapse
|
13
|
Giangregorio N, Pierri CL, Tonazzi A, Incampo G, Tragni V, De Grassi A, Indiveri C. Proline/Glycine residues of the PG-levels guide conformational changes along the transport cycle in the mitochondrial carnitine/acylcarnitine carrier (SLC25A20). Int J Biol Macromol 2022; 221:1453-1465. [PMID: 36122779 DOI: 10.1016/j.ijbiomac.2022.09.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022]
Abstract
Mitochondrial carnitine/acylcarnitine carrier (CAC) is a member of the mitochondrial carrier (MC) family and imports acylcarnitine into the mitochondrial matrix in exchange for carnitine, playing a pivotal role in carnitine shuttle, crucial for fatty acid oxidation. The crystallized structure of CAC has not been solved yet, however, the availability of several in vitro/in silico studies, also based on the crystallized structures of the ADP/ATP carrier in the cytosolic-conformation and in the matrix-conformation, has made possible to confirm the hypothesis of the single-binding centered-gated pore mechanism for all the members of the MC family. In addition, our recent bioinformatics analyses allowed quantifying in silico the importance of protein residues of MC substrate binding region, of those involved in the formation of the matrix and cytosolic gates, and of those belonging to the Pro/Gly (PG) levels, proposed to be crucial for the tilting/kinking/bending of the six MC transmembrane helices, funneling the substrate translocation pathway. Here we present a combined in silico/in vitro analysis employed for investigating the role played by a group of 6 proline residues and 6 glycine residues, highly conserved in CAC, belonging to MC PG-levels. Residues of the PG-levels surround the similarly located MC common substrate binding region, and were proposed to lead conformational changes and substrate translocation, following substrate binding. For our analysis, we employed 3D molecular modeling approaches, alanine scanning site-directed mutagenesis and in vitro transport assays. Our analysis reveals that P130 (H3), G268 (H6) and G220 (H5), mutated in alanine, affect severely CAC transport activity (mutant catalytic efficiency lower than 5 % compared to the wild type CAC), most likely due to their major role in triggering CAC conformational changes, following carnitine binding. Notably, P30A (H1) and G121A (H3) CAC mutants, increase the carnitine uptake up to 217 % and 112 %, respectively, compared to the wild type CAC.
Collapse
Affiliation(s)
- Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy.
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Giovanna Incampo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Vincenzo Tragni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy, Via E. Orabona, 4, 70126 Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
14
|
Bölsterli BK, Boltshauser E, Palmieri L, Spenger J, Brunner-Krainz M, Distelmaier F, Freisinger P, Geis T, Gropman AL, Häberle J, Hentschel J, Jeandidier B, Karall D, Keren B, Klabunde-Cherwon A, Konstantopoulou V, Kottke R, Lasorsa FM, Makowski C, Mignot C, O’Gorman Tuura R, Porcelli V, Santer R, Sen K, Steinbrücker K, Syrbe S, Wagner M, Ziegler A, Zöggeler T, Mayr JA, Prokisch H, Wortmann SB. Ketogenic Diet Treatment of Defects in the Mitochondrial Malate Aspartate Shuttle and Pyruvate Carrier. Nutrients 2022; 14:3605. [PMID: 36079864 PMCID: PMC9460686 DOI: 10.3390/nu14173605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The mitochondrial malate aspartate shuttle system (MAS) maintains the cytosolic NAD+/NADH redox balance, thereby sustaining cytosolic redox-dependent pathways, such as glycolysis and serine biosynthesis. Human disease has been associated with defects in four MAS-proteins (encoded by MDH1, MDH2, GOT2, SLC25A12) sharing a neurological/epileptic phenotype, as well as citrin deficiency (SLC25A13) with a complex hepatopathic-neuropsychiatric phenotype. Ketogenic diets (KD) are high-fat/low-carbohydrate diets, which decrease glycolysis thus bypassing the mentioned defects. The same holds for mitochondrial pyruvate carrier (MPC) 1 deficiency, which also presents neurological deficits. We here describe 40 (18 previously unreported) subjects with MAS-/MPC1-defects (32 neurological phenotypes, eight citrin deficiency), describe and discuss their phenotypes and genotypes (presenting 12 novel variants), and the efficacy of KD. Of 13 MAS/MPC1-individuals with a neurological phenotype treated with KD, 11 experienced benefits-mainly a striking effect against seizures. Two individuals with citrin deficiency deceased before the correct diagnosis was established, presumably due to high-carbohydrate treatment. Six citrin-deficient individuals received a carbohydrate-restricted/fat-enriched diet and showed normalisation of laboratory values/hepatopathy as well as age-adequate thriving. We conclude that patients with MAS-/MPC1-defects are amenable to dietary intervention and that early (genetic) diagnosis is key for initiation of proper treatment and can even be lifesaving.
Collapse
Affiliation(s)
- Bigna K. Bölsterli
- Department of Pediatric Neurology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Eugen Boltshauser
- Department of Pediatric Neurology (Emeritus), University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Luigi Palmieri
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70126 Bari, Italy
| | - Johannes Spenger
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Michaela Brunner-Krainz
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, 72764 Reutlingen, Germany
| | - Tobias Geis
- University Children′s Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, 93049 Regensburg, Germany
| | - Andrea L. Gropman
- Division of Neurogenetics, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, DC 20010, USA
| | - Johannes Häberle
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Division of Metabolism, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103 Leipzig, Germany
| | - Bruno Jeandidier
- APHP, Service de Pédiatrie, CHU Jean Verdier, 93140 Bondy, France
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Boris Keren
- Département de Génétique, Unité Fonctionnelle de Génomique du Développement, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Annick Klabunde-Cherwon
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Vassiliki Konstantopoulou
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Raimund Kottke
- Department of Diagnostic Imaging, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Francesco M. Lasorsa
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70126 Bari, Italy
| | - Christine Makowski
- Department of Paediatrics, Children’s Hospital Munich Schwabing, MüK and TUM, 80804 Munich, Germany
| | - Cyril Mignot
- Département de Génétique, Unité Fonctionnelle de Génomique du Développement, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Ruth O’Gorman Tuura
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Center for MR Research, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Vito Porcelli
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, 20246 Hamburg, Germany
| | - Kuntal Sen
- Division of Neurogenetics, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, DC 20010, USA
| | - Katja Steinbrücker
- Department of Neuropediatrics, Paracelsus Medical University Hospital Salzburg, 5020 Salzburg, Austria
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, 80337 Munich, Germany
- Institute for Neurogenomics, Computational Health Center, Helmholtz Zentrum München, German Research Center for Health and Environment (GmbH), 85764 Munich, Germany
| | - Andreas Ziegler
- Division of Neuropaediatrics and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Zöggeler
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute for Neurogenomics, Computational Health Center, Helmholtz Zentrum München, German Research Center for Health and Environment (GmbH), 85764 Munich, Germany
| | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Radboud Centre for Mitochondrial Medicine (RCMM), Amalia Children’s Hospital, Radboudumc, 6525 Nijmegen, The Netherlands
| |
Collapse
|
15
|
Zhang T, Zhu S, Miao H, Yang J, Shi Y, Yue Y, Zhang Y, Yang R, Wu B, Huang X. Dynamic changes of metabolic characteristics in neonatal intrahepatic cholestasis caused by citrin deficiency. Front Mol Biosci 2022; 9:939837. [PMID: 36090036 PMCID: PMC9449879 DOI: 10.3389/fmolb.2022.939837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a pan-ethnic complicated inborn error of metabolism but the specific mechanism is not fully understood.Methods: A total of 169 patients with NICCD who have biallelic pathogenic SLC25A13 variants detected by targeted next-generation sequencing were collected. They were divided into the “Newborn-screen Group” and “Clinical diagnosed Group” depending on the newborn screening results. Amino acid and acylcarnitine profiles were measured by MS/MS. The total bile acids, blood amino acids and acylcarnitines, general biochemistry, blood count, and coagulation parameters were monitored every 2–3 months. We compared the differences in metabolic indices and their dynamic changes between these two groups. The Mann–Whitney test and orthogonal partial least squares discrimination analysis (OPLS-DA) were used for statistical analysis.Results: At the onset of NICCD, we found that the “Clinical diagnosed Group” had higher levels of intermediate products of the urea cycle, free carnitine, and short-chain and long-chain acylcarnitines than those in the “Newborn-screen Group,” but the levels of ketogenic/glucogenic amino acids and several medium-chain acylcarnitines were lower. Furthermore, concentrations of direct bilirubin, total bile acid, lactate, prothrombin time, and several liver enzymes were significantly higher while total protein, amylase, and hemoglobin were lower in the “Clinical diagnosed Group” than in the “Newborn-screen Group.” Dynamic change analysis showed that direct bilirubin, albumin, arginine, and citrulline were the earliest metabolic derangements to reach peak levels in NICCD groups, followed by acylcarnitine profiles, and finally with the elevation of liver enzymes. All abnormal characteristic metabolic indicators in the “Newborn-screen Group” came back to normal levels at earlier ages than the “Clinical diagnosed Group.” c.852_855del (41.2%), IVS16ins3kb (17.6%), c.615 + 5G>A (9.6%), 1638_1660dup (4.4%), and c.1177 + 1G>A (3.7%) accounted for 76.5% of all the mutated SLC25A13 alleles in our population.Conclusion: Argininosuccinate synthesis, gluconeogenesis, ketogenesis, fatty acid oxidation, liver function, and cholestasis were more severely affected in the “Clinical diagnosed Group.” The “Newborn-screen Group” had a better prognosis which highlighted the importance of newborn screening of NICCD.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shasha Zhu
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haixia Miao
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yezhen Shi
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Yuwei Yue
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Yu Zhang
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Rulai Yang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Benqing Wu
- Department of Neonatology, Children’s Medical Center, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Benqing Wu, ; Xinwen Huang,
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Benqing Wu, ; Xinwen Huang,
| |
Collapse
|
16
|
Lv T, Jia J. Rare liver diseases are not rare in China. Liver Int 2022; 42:2023-2028. [PMID: 35365968 DOI: 10.1111/liv.15267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 02/13/2023]
Abstract
Rare diseases, also known as orphan diseases, are a group of diseases that affect a relatively small number of people. Low incidence rates, atypical symptoms, imperfect diagnosis criteria and few treatment options impose medical, psychological and financial stress on the local healthcare system. The spectrum of liver diseases in China has changed in the past decades due to successful control of once highly prevalent viral hepatitis B and C. Furthermore, the increased awareness and improved availability of specific laboratory tests have also facilitated the diagnosis of rare diseases such as autoimmune, cholestatic and genetic liver diseases. Finally, considering the huge population, the total number of many rare liver diseases in China is not as rare as once deemed. In this mini-review article, we will outline the current clinical and epidemiological profiles of some rare liver diseases that are no longer rare in China.
Collapse
Affiliation(s)
- Tingting Lv
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Transitional Medicine on Liver Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Transitional Medicine on Liver Cirrhosis, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
17
|
Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 2022; 33:539-553. [PMID: 35725541 PMCID: PMC7614230 DOI: 10.1016/j.tem.2022.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
Citrin deficiency is a pan-ethnic and highly prevalent mitochondrial disease with three different stages: neonatal intrahepatic cholestasis (NICCD), a relatively mild adaptation stage, and type II citrullinemia in adulthood (CTLN2). The cause is the absence or dysfunction of the calcium-regulated mitochondrial aspartate/glutamate carrier 2 (AGC2/SLC25A13), also called citrin, which imports glutamate into the mitochondrial matrix and exports aspartate to the cytosol. In citrin deficiency, these missing transport steps lead to impairment of the malate-aspartate shuttle, gluconeogenesis, amino acid homeostasis, and the urea cycle. In this review, we describe the geological spread and occurrence of citrin deficiency, the metabolic consequences and use our current knowledge of the structure to predict the impact of the known pathogenic mutations on the calcium-regulatory and transport mechanism of citrin.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
18
|
Cheng Z, He X, Zou F, Xu ZE, Li C, Liu H, Miao J. Identification of Novel Mutations in Chinese Infants With Citrullinemia. Front Genet 2022; 13:783799. [PMID: 35309121 PMCID: PMC8929347 DOI: 10.3389/fgene.2022.783799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Citrullinemia is a rare autosomal recessive disorder characterized by elevated concentrations of citrulline in the blood resulting from malfunction of the urea cycle. It is categorized into two types, types I and II, which are caused by argininosuccinate synthase 1 (ASS1), and citrin (SLC25A13) gene mutations, respectively. In this study, we performed genetic analysis on nine Chinese infants with citrullinemia using next-generation sequencing, which identified a novel mutation (p.Leu313Met) and a rare mutation (p.Thr323Ile, rs1250895424) of ASS1. We also found a novel splicing mutation of SLC25A13: c.1311 + 4_+7del. Functional analysis of the ASS1 missense mutations showed that both significantly impaired the enzyme activity of ASS1, with the p. Thr323Ile mutation clearly affecting the interaction between ASS1 and protein arginine methyltransferase 7 (PRMT7). These findings expand the mutational spectrum of ASS1 and SLC25A13, and further our understanding of the molecular genetic mechanism of citrullinemia in the Chinese population.
Collapse
Affiliation(s)
- Zhi Cheng
- Key Laboratory of Birth Defects and Reproductive Health of the National Health and Family Planning Commission (Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiwen He
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fa Zou
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhen-E Xu
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chun Li
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hao Liu
- Neonatal Disease Screening Center, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jingkun Miao
- Neonatal Disease Screening Center, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Jingkun Miao,
| |
Collapse
|
19
|
Aoki H, Ogiwara K, Hasegawa M, Nogami K. Hemostatic rebalance in neonatal intrahepatic cholestasis with citrin deficiency. Pediatr Int 2022; 64:e14741. [PMID: 33851467 DOI: 10.1111/ped.14741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/16/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neonatal intrahepatic cholestasis with citrin deficiency (NICCD) results in coagulopathy due to decreased levels of vitamin (V)K-dependent clotting factors, similar to biliary atresia (BA). However, the involvement of VK-independent coagulant and anticoagulant factor(s) remains unknown. We examined relationships between coagulant and anticoagulant potential before and after nutritional treatment in NICCD. METHODS Three cases (aged 12, 21, and 45 days) with NICCD-associated coagulopathy were evaluated with standard coagulation/anticoagulation tests and comprehensive coagulation assays, rotational thromboelastometry, and protein C/protein S (PC/PS) pathway function assay (ThromboPath® ), before and after nutritional treatment. RESULTS In all cases, activated partial thromboplastin time and prothrombin time were significantly prolonged, which is associated with very low levels of VK-independent fibrinogen and antithrombin. The initiation of nutritional treatment of medium-chain triglycerides oil improved these levels within the normal range, although low levels of other clotting factors were modestly increased. Whole blood- rotational thromboelastometry analysis revealed near-normal coagulation potential, even before treatment, comparable to healthy adults, and supportive of their non-bleeding symptoms. The introduction of nutritional treatment had further improved comprehensive coagulation potential. The global PC/PS-pathway function assay demonstrated the absence of the features of this function associated with the pathogenesis of NICCD. Compared to BA, the plasma levels of fibrinogen and antithrombin in all cases were markedly low, whilst those after treatment improved, especially to similar level of BA. CONCLUSIONS Neonatal intrahepatic cholestasis with citrin deficiency has the characteristic of rebalancing hemostatic mechanisms associated with coagulant and anticoagulant potential involving low levels of fibrinogen and antithrombin, suggesting a pathophysiological coagulopathy distinct from BA.
Collapse
Affiliation(s)
- Hirosato Aoki
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Kenichi Ogiwara
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Mari Hasegawa
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | - Keiji Nogami
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
20
|
Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency with SLC25A13 Mutation Presenting Hepatic Steatosis and Prolonged Jaundice. A Rare Case Report. ACTA ACUST UNITED AC 2021; 57:medicina57101032. [PMID: 34684069 PMCID: PMC8541001 DOI: 10.3390/medicina57101032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
Background: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a rare autosomal recessive disease. The incidence of citrin deficiency is estimated between 1/10,000 and 1/20,000 in Taiwan. Case report: This report describes a case of a 42 day old female infant who suffered from prolonged jaundice, poor weight gain, and anemia. The initial total/direct bilirubin levels were 8.1/3.11 mg/dL. Liver biopsy was performed at 47 days old. The pathology revealed lobules marked with macrovesicular and microvesicular fatty metamorphosis. The serum amino acid profile showed elevated levels of threonine, methionine, citrulline, and arginine. Newborn screening disclosed normal results, but the genetic study revealed SLC25A13 mutation 851-854 del and 615 + 5G > A. The genetic study of her parents showed that the father carried the SLC25A13 mutation 851-854 del and the mother carried the SLC25A13 mutation 615 + 5G > A. Treatment with ursodeoxycholic acid decreased the bilirubin levels to a normal range at the age of 5 months. Conclusion: This report illustrates that hepatic steatosis is a feature of NICCD. For every young infant patient who develops cholestasis, the pediatrician must consider NICCD as a differential diagnosis even if newborn screening shows normal findings.
Collapse
|
21
|
Arai-Ichinoi N, Kikuchi A, Wada Y, Sakamoto O, Kure S. Hypoglycemic attacks and growth failure are the most common manifestations of citrin deficiency after 1 year of age. J Inherit Metab Dis 2021; 44:838-846. [PMID: 33861477 DOI: 10.1002/jimd.12390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022]
Abstract
Citrin deficiency develops in different symptomatic periods from the neonatal period to adulthood. Some infantile patients are diagnosed by newborn mass screening or symptoms of neonatal intrahepatic cholestasis caused by citrin deficiency, some patients in childhood may develop hepatopathy or dyslipidemia as failure to thrive and dyslipidemia caused by citrin deficiency, and some adults are diagnosed after developing adult-onset type 2 citrullinemia (CTLN2) with hyperammonemia or encephalopathy. A diagnosis is needed before the development of severe phenotypic CTLN2 but is often difficult to obtain because newborn mass screening cannot detect all patients with citrin deficiency, and undiagnosed patients often appear healthy in childhood. There are only a few reports that have described patients in childhood. To explore the clinical features of undiagnosed patients with citrin deficiency in childhood, we studied 20 patients who were diagnosed after the first year of life. Of these patients, 45% experienced hypoglycemic attacks in childhood. The acetoacetic acid level during hypoglycemic attacks was lower than expected. Growth failure at diagnosis (45%) was also noted. From the patients' history, fat- and protein-rich food preferences (80%), a low birth weight (70%), and prolonged jaundice or infantile hepatopathy (40%) were identified. To diagnose citrin deficiency in childhood, we should ask about food preferences and a history of infantile hepatopathy for all children with severe hypoglycemia or growth failure and consider the genetic test for citrin deficiency if the patient has characteristic food preferences or a history of infantile hepatopathy.
Collapse
Affiliation(s)
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Osamu Sakamoto
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven‐Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021; 44:792-808. [PMID: 33990986 PMCID: PMC8362162 DOI: 10.1002/jimd.12402] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.
Collapse
Affiliation(s)
- Melissa H. Broeks
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Clara D. M. van Karnebeek
- Departments of PediatricsAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| |
Collapse
|
23
|
Lin WX, Yaqub MR, Zhang ZH, Mao M, Zeng HS, Chen FP, Li WM, Cai WZ, Li YQ, Tan ZY, Sheng W, Li ZM, Tao XL, Li YX, Zhang JP, Han YB, Li Y, Duan WQ, Ye BN, Li YR, Song YZ. Molecular epidemiologic study of citrin deficiency by screening for four reported pathogenic SLC25A13 variants in the Shaanxi and Guangdong provinces, China. Transl Pediatr 2021; 10:1658-1667. [PMID: 34295780 PMCID: PMC8261583 DOI: 10.21037/tp-21-58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Citrin deficiency (CD) is an autosomal recessive disease resulting from biallelic mutations of the SLC25A13 gene. This study aimed to investigate the molecular epidemiological features of CD in the Guangdong and Shaanxi provinces of China. METHODS A total of 3,409 peripheral blood samples from Guangdong and 2,746 such samples from Shaanxi province were collected. Four prevalent SLC25A13 mutations NG_012247.2 (NM_014251.3): c.852_855del, c.1638_1660dup, c.615+5G>A, and c.1751-5_1751-4ins(2684) were screened by using the conventional polymerase chain reaction (PCR)/PCR-restriction fragment length polymorphism and newly-developed multiplex PCR methods, respectively. The mutated SLC25A13 allele frequencies, carrier frequencies, and CD morbidity rates were calculated and then compared with the Chi-square and Fisher's exact tests. RESULTS The mutations were detected in 68 out of 6,818 SLC25A13 alleles in Guangdong and 29 out of 5,492 alleles in the Shaanxi population. The carrier frequencies were subsequently calculated to be 1/51 and 1/95, while the CD morbidity rates were 1/10,053 and 1/35,865, in the 2 populations, respectively. When compared with the Shaanxi population, Guangdong exhibited a higher frequency of mutated SLC25A13 allele (68/6,818 vs. 29/5,492, χ2=8.570, P=0.003) in general, with higher c.852_855del (54/6,818 vs. 13/5,492, χ2=17.328, P=0.000) but lower c.1751-5_1751 -4ins(2684) (2/6,818 vs. 9/5,492, P=0.015) allele frequencies. The distribution of c.615+5G>A and c.1638_1660dup between the 2 provinces, as well as all 4 prevalent mutations among different geographic regions within the 2 provinces, did not differed significantly. CONCLUSIONS Our findings depicted the CD molecular epidemiological features in Guangdong and Shaanxi populations, providing preliminary but significant laboratory evidences for the subsequent CD diagnosis and management in the 2 provinces of mainland China.
Collapse
Affiliation(s)
- Wei-Xia Lin
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Muhammad Rauf Yaqub
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhan-Hui Zhang
- Clinical Medicine Research Institute, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Man Mao
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Han-Shi Zeng
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Feng-Ping Chen
- Department of Laboratory Science, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wei-Ming Li
- Department of Pediatrics, Maternal and Child Health Hospital of Qingyuan City, Qingyuan, China
| | - Wen-Zhe Cai
- Department of Internal Medicine, Central Hospital of Shantou City, Shantou, China
| | - Ying-Qiang Li
- Department of Internal Medicine, Maternal and Child Health Hospital of Yunfu City, Yunfu, China
| | - Zhi-Yong Tan
- Department of Pediatrics, Maternal and Child Health Hospital of Shaoguan City, Shaoguan, China
| | - Wei Sheng
- Department of Pediatrics, Weinan First Hospital, Weinan, China
| | - Zhi-Min Li
- Department of Pediatrics, San Er Ling Yi Hospital, Hanzhong, China
| | - Xiao-Ling Tao
- Department of Pediatrics, Xianyang Rainbow Hospital (Xianyang Children's Hospital), Xianyang, China
| | - Yuan-Xia Li
- Department of Pediatrics, Yan'an University Hospital, Yan'an, China
| | - Jun-Ping Zhang
- Clinical laboratory, Qishan County Hospital, Qishan, China
| | - Yao-Bin Han
- Department of Infectious Diseases, Shenmu Hospital of Northwestern University, Shenmu, China
| | - Yan Li
- Department of Pediatrics, Zhashui County Hospital, Zhashui, China
| | - Wu-Qiong Duan
- Department of Pediatrics, Ankang Central Hospital, Ankang, China
| | - Bao-Ni Ye
- Department of Pediatrics, Southern Campus of Tongchuan People's Hospital, Tongchuan, China
| | - Ya-Rong Li
- The Third Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Yuan-Zong Song
- Department of Pediatrics, the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Lau NKC, Lee HHC, Chen SPL, Ng CWY, Mak CM, Chong YK, Tong TTY, Leung MT, Shek CC, Yuen YP, Ching CK. In-house multiplex ligation-dependent probe amplification assay for citrin deficiency: analytical validation and novel exonic deletions in SLC25A13. Pathology 2021; 53:867-874. [PMID: 34045052 DOI: 10.1016/j.pathol.2021.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Citrin deficiency is one of the most common inborn errors of metabolism in East Asians, which may manifest as neonatal cholestasis, failure to thrive and dyslipidaemia, or recurrent hyperammonaemic encephalopathy. Its molecular diagnosis requires confirmation of the presence of biallelic pathogenic variants in SLC25A13 gene by sequencing, and analysis for a common insertion IVS16ins3kb. However, patients with compatible biochemical features but only one monoallelic pathogenic variant have remained a diagnostic challenge. Here we report the development, validation and application of a multiplex ligation-dependent probe amplification (MLPA) assay using an in-house oligonucleotide probemix and a customised Coffalyer.NET worksheet for detection of exonic copy number variations in SLC25A13. With this MLPA assay, we successfully identified the presence of a heterozygous exonic deletion in SLC25A13 in three of 15 (20%) unrelated individuals with only one monoallelic pathogenic variant detected using conventional methods. Three exonic deletions, two novel involving exon 14 and one reported involving exon 5, were subsequently confirmed with Sanger sequencing. In summary, we developed, evaluated, and demonstrated the clinical utility of an in-house MLPA assay to look for exonic deletions in SLC25A13 in patients with citrin deficiency. With the discovery of novel deletions, MLPA should be considered a test of choice for molecular diagnosis of citrin deficiency when the sequencing result is inconclusive.
Collapse
Affiliation(s)
- Nike Kwai Cheung Lau
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Hencher Han Chih Lee
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Sammy Pak Lam Chen
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Candy Wai Yan Ng
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Chloe Miu Mak
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Yeow Kuan Chong
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Tammy Tsz Yan Tong
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | - Mei Tik Leung
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Chi Chung Shek
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yuet Ping Yuen
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chor Kwan Ching
- Kowloon West Cluster Laboratory Genetic Service, Chemical Pathology Laboratory, Department of Pathology, Princess Margaret Hospital, Hong Kong, China.
| |
Collapse
|
25
|
Fang Y, Yu J, Lou J, Peng K, Zhao H, Chen J. Clinical and Genetic Spectra of Inherited Liver Disease in Children in China. Front Pediatr 2021; 9:631620. [PMID: 33763395 PMCID: PMC7982861 DOI: 10.3389/fped.2021.631620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Children presenting with chronic liver disease or acute liver failure often have an underlying genetic disorder. The aim of this study was to analyze the clinical and genetic spectra of inherited liver disease in children in a tertiary hospital. Methods: A total of 172 patients were classified into three groups according to their clinical presentation: cholestasis (Group A), liver enzyme elevation (Group B), and hepato/splenomegaly (Group C). Next-generation sequencing (NGS) was performed on all patients recruited in this study. The genotypic and phenotypic spectra of disease in these patients were reviewed. Results: The median age at enrollment of the 172 patients was 12.0 months (IQR: 4.9, 42.5 months), with 52.3% males and 47.7% females. The overall diagnostic rate was 55.8% (96/172) in this group. The diagnostic rates of whole-exome sequencing (WES) and targeted gene panel sequencing (TGPS) were 47.2% and 62.0%, respectively (no significant difference, p = 0.054). We identified 25 genes related to different phenotypes, including 46 novel disease-related pathogenic mutations. The diagnostic rates in the three groups were 46.0% (29/63), 48.6% (34/70), and 84.6% (33/39). ATP7B, SLC25A13, and G6PC were the top three genes related to monogenic liver disease in this study. Conclusion: WES and TGPS show similar diagnostic rates in the diagnosis of monogenic liver disease. NGS has an important role in the diagnosis of monogenetic liver disease and can provide more precise medical treatment and predict the prognosis of these diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Chen
- National Clinical Research Center for Child Health, Department of Gastroenterology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency: In vivo and in vitro studies of the aberrant transcription arising from two novel splice-site variants in SLC25A13. Eur J Med Genet 2021; 64:104145. [PMID: 33497767 DOI: 10.1016/j.ejmg.2021.104145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) is an autosomal recessive disease resulting from biallelic SLC25A13 mutations, and its diagnosis relies on genetic analysis. This study aimed to characterize the pathogenicity of 2 novel splice-site variants of SLC25A13 gene. Two patients (C0476 and C0556) suspected to have NICCD, their family members and 9 healthy volunteers were recruited as the research subjects. The SLC25A13 genotypes NG_012247.2(NM_014251.3): c.[852_855del]; [69+5G > A] in patient C0476 and c.[1453-1G > A]; [1751-5_1751-4ins (2684)] in patient C0556 were identified by means of polymerase chain reaction, long and accurate polymerase chain reaction, as well as Sanger sequencing. The 2 splice-site variants were absent in control databases and predicted to be pathogenic by computational analysis. The alternative splice variants in monocyte-derived macrophages from patient C0476 demonstrated exon 2 skipping [r.16_69del; p.(Val6_Lys23del)] in vivo, while minigene analysis revealed both exon 2-skipping and retained products from c.69+5G > A in vitro. In the patient C0556, an aberrant transcript [r.1453del; p.(Gly485Valfs*22)] resulting from c.1453-1G > A was detected on minigene splicing study. Thus, c.69+5G > A and c.1453-1G > A were both proved to be pathogenic. The 2 novel splice-site variants expanded the SLC25A13 mutation spectrum and provided reliable molecular markers for the definite diagnosis and genetic counseling of NICCD in the affected families.
Collapse
|
27
|
Zeng Q, Yang Y, Luo J, Xu J, Deng C, Yang Y, Tan S, Sun S, Li Y, Ou T. Rapid Genetic Diagnosis of Citrin Deficiency by Multicolor Melting Curve Analysis. Front Pediatr 2021; 9:654527. [PMID: 34026689 PMCID: PMC8133314 DOI: 10.3389/fped.2021.654527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Citrin deficiency caused by SLC25A13 genetic mutations is an autosomal recessive disease, and four prevalent mutations including c.851_854del, c.1638_1660dup, IVS6+5G>A, and IVS16ins3kb make up >80% of total pathogenic mutations within the Chinese population. However, suitable assays for detection of these mutations have not yet been developed for use in routine clinical practice. In the current study, a real-time PCR-based multicolor melting curve analysis (MMCA) was developed to detect the four prevalent mutations in one closed-tube reaction. The analytical and clinical performances were evaluated using artificial templates and clinical samples. All four mutations in the test samples were accurately genotyped via their labeling fluorophores and Tm values, and the standard deviations of Tm values were indicated to be <0.2°C. The limit of detection was estimated to be 500 diploid human genomes per reaction. The MMCA assay of 5,332 healthy newborns from southern China identified a total of 107 SLC25A13-mutation carriers, indicating a carrier rate of 2%. The genotypes of 107 carriers and 112 random non-carriers were validated using direct sequencing and Long-range PCR with 100% concordance. In conclusion, the assay developed in this study may potentially serve as a rapid genetic diagnostic tool for citrin deficiency.
Collapse
Affiliation(s)
- Qinlong Zeng
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yingsong Yang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Jiahong Luo
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Jinmei Xu
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Choufen Deng
- Department of Pediatrics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yuanjuan Yang
- Department of Pediatrics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Shuming Tan
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Shuxiang Sun
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yuping Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Tong Ou
- Prenatal Diagnosis Center and Medical Laboratory, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| |
Collapse
|
28
|
Lin Y, Lin W, Chen Y, Lin C, Zheng Z, Zhuang J, Fu Q. Combined primary carnitine deficiency with neonatal intrahepatic cholestasis caused by citrin deficiency in a Chinese newborn. BMC Pediatr 2020; 20:478. [PMID: 33050909 PMCID: PMC7552534 DOI: 10.1186/s12887-020-02372-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Primary carnitine deficiency (PCD) is an autosomal recessive disorder affecting the carnitine cycle and resulting in defective fatty acid oxidation. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder and one of the main causes of inherited neonatal cholestasis. Both PCD and NICCD are included in the current expanded newborn screening (NBS) targets. Case presentation Targeted exome sequencing was performed on a Chinese proband, and Sanger sequencing was utilised to validate the detected mutations. The patient who was initially suspected to have PCD based on the NBS results presented with neonatal intrahepatic cholestasis and ventricular septal defect. Further investigations not only confirmed PCD but also revealed the presence of NICCD. Four distinct mutations were detected, including c.51C > G (p.F17L) and c.760C > T (p.R254X) in SLC22A5 as well as c.615 + 5G > A and IVS16ins3kb in SLC25A13. Conclusions This is the first reported case of PCD and NICCD occurring in the same patient. The dual disorders in a newborn broaden our understanding of inherited metabolic diseases. Thus, this study highlighted the importance of further genetic testing in patients presenting with unusual metabolic screening findings.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Yanru Chen
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Zhenzhu Zheng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
29
|
Unita S, Hirashima N, Shimada M, Tsunekawa T, Tanaka D, Kondo T, Urata N, Kondo H, Saito M, Iwase H, Ito S, Togawa T, Saitoh S, Tanaka Y. Successful treatment of adult-onset type II citrullinemia with a low-carbohydrate diet and L-arginine after DNA analysis produced a definitive diagnosis. Clin J Gastroenterol 2020; 13:823-833. [PMID: 31898207 DOI: 10.1007/s12328-019-01083-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
A 60-year-old male, who exhibited finger tremors, obnubilation, and hyperammonemia (409 μg/dL), was admitted to our hospital. Initially, we suspected that a portosystemic shunt had caused his hyperammonemia. However, his symptoms did not improve after balloon-occluded retrograde transvenous obliteration. He was subsequently found to have some peculiar eating habits, including a fondness for bean curd and peanuts, and an aversion to alcohol and sweets. Furthermore, marked citrullinemia (454.2 nmol/mL) was revealed, which led us to suspect adult-onset type II citrullinemia (CTLN2). DNA analysis of the patient and his mother, son, and daughter confirmed that he was homozygous for the c.852_855del mutation in the SLC25A13 gene, and his relatives were heterozygous for the c.852_855del mutation, which led to a definitive diagnosis. A low-carbohydrate diet and the administration of L-arginine ameliorated his symptoms. It is important to be aware that CTLN2 can occur in elderly patients. Thus, patients who exhibit symptoms of CTLN2 should be interviewed about their dietary habits and subjected to plasma amino acid analysis.In this report, we consider the metabolic disorders seen in citrin deficiency and the associated compensatory mechanisms in relation to the clinical features and treatment of CTLN2.
Collapse
Affiliation(s)
- Satoshi Unita
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan.
| | - Noboru Hirashima
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masaaki Shimada
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takuya Tsunekawa
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Daiki Tanaka
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takashi Kondo
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Noboru Urata
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hisashi Kondo
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masashi Saito
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hiroaki Iwase
- Department of Gastroenterology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Shogo Ito
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takao Togawa
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
30
|
Chalermwat C, Thosapornvichai T, Wongkittichote P, Phillips JD, Cox JE, Jensen AN, Wattanasirichaigoon D, Jensen LT. Overexpression of the peroxin Pex34p suppresses impaired acetate utilization in yeast lacking the mitochondrial aspartate/glutamate carrier Agc1p. FEMS Yeast Res 2020; 19:5621492. [PMID: 31711143 DOI: 10.1093/femsyr/foz078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
PEX34, encoding a peroxisomal protein implicated in regulating peroxisome numbers, was identified as a high copy suppressor, capable of bypassing impaired acetate utilization of agc1∆ yeast. However, improved growth of agc1∆ yeast on acetate is not mediated through peroxisome proliferation. Instead, stress to the endoplasmic reticulum and mitochondria from PEX34 overexpression appears to contribute to enhanced acetate utilization of agc1∆ yeast. The citrate/2-oxoglutarate carrier Yhm2p is required for PEX34 stimulated growth of agc1∆ yeast on acetate medium, suggesting that the suppressor effect is mediated through increased activity of a redox shuttle involving mitochondrial citrate export. Metabolomic analysis also revealed redirection of acetyl-coenzyme A (CoA) from synthetic reactions for amino acids in PEX34 overexpressing yeast. We propose a model in which increased formation of products from the glyoxylate shunt, together with enhanced utilization of acetyl-CoA, promotes the activity of an alternative mitochondrial redox shuttle, partially substituting for loss of yeast AGC1.
Collapse
Affiliation(s)
- Chalongchai Chalermwat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand.,Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - John D Phillips
- Department of Internal Medicine, Division of Hematology, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA.,Department of Biochemistry, University of Utah, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok 10400, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Road, Ratchathewi, Bangkok 10400 Thailand
| |
Collapse
|
31
|
Lin Y, Liu Y, Zhu L, Le K, Shen Y, Yang C, Chen X, Hu H, Ma Q, Shi X, Hu Z, Yang J, Shen Y, Lin CH, Huang C, Huang X. Combining newborn metabolic and genetic screening for neonatal intrahepatic cholestasis caused by citrin deficiency. J Inherit Metab Dis 2020; 43:467-477. [PMID: 31845334 DOI: 10.1002/jimd.12206] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
To evaluate the feasibility of incorporating genetic screening for neonatal intrahepatic cholestasis, caused by citrin deficiency (NICCD), into the current newborn screening (NBS) program. We designed a high-throughput iPLEX genotyping assay to detect 28 SLC25A13 mutations in the Chinese population. From March 2018 to June 2018, 237 630 newborns were screened by tandem mass spectrometry at six hospitals. Newborns with citrulline levels between 1/2 cutoff and cutoff values of the upper limit were recruited for genetic screening using the newly developed assay. The sensitivity and specificity of the iPLEX genotyping assay both reached 100% in clinical practice. Overall, 29 364 (12.4%) newborns received further genetic screening. Five patients with conclusive genotypes were successfully identified. The most common SLC25A13 mutation was c.851_854del, with an allele frequency of 60%. In total, 658 individuals with one mutant allele were identified as carriers. Eighteen different mutations were observed, yielding a carrier rate of 1/45. Notably, Quanzhou in southern China had a carrier rate of up to 1/28, whereas Jining in northern China had a carrier rate higher than that of other southern and border cities. The high throughput iPLEX genotyping assay is an effective and reliable approach for NICCD genotyping. The combined genetic screening could identify an additional subgroup of patients with NICCD, undetectable by conventional NBS. Therefore, this study demonstrates the viability of incorporating genetic screening for NICCD into the current NBS program.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Yaru Liu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhu
- Department of Translational Medicine, Hangzhou Genuine Clinical Laboratory Co. Ltd, Hangzhou, China
| | - Kaixing Le
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyan Shen
- Neonatal Disease Screening Center, Huaihua Maternal and Child Health Hospital, Huaihua, China
| | - Chiju Yang
- Neonatal Disease Screening Center, Jining Maternal and Child Health Family Service Center, Jining, China
| | - Xigui Chen
- Neonatal Disease Screening Center, Jining Maternal and Child Health Family Service Center, Jining, China
| | - Haili Hu
- Neonatal Disease Screening Center, Hefei Women and Children's Health Care Hospital, Hefei, China
| | - Qingqing Ma
- Neonatal Disease Screening Center, Hefei Women and Children's Health Care Hospital, Hefei, China
| | - Xueqin Shi
- Department of Pediatrics, Yancheng Maternity and Child Health Care Hospital, Yancheng, China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaping Shen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chien-Hsing Lin
- Department of Research and Development, Feng Chi Biotech Corp, Taipei, Taiwan
| | - Chenggang Huang
- Research and Development Center, Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
32
|
Palmieri F, Scarcia P, Monné M. Diseases Caused by Mutations in Mitochondrial Carrier Genes SLC25: A Review. Biomolecules 2020; 10:biom10040655. [PMID: 32340404 PMCID: PMC7226361 DOI: 10.3390/biom10040655] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the 1980s, after the mitochondrial DNA (mtDNA) had been sequenced, several diseases resulting from mtDNA mutations emerged. Later, numerous disorders caused by mutations in the nuclear genes encoding mitochondrial proteins were found. A group of these diseases are due to defects of mitochondrial carriers, a family of proteins named solute carrier family 25 (SLC25), that transport a variety of solutes such as the reagents of ATP synthase (ATP, ADP, and phosphate), tricarboxylic acid cycle intermediates, cofactors, amino acids, and carnitine esters of fatty acids. The disease-causing mutations disclosed in mitochondrial carriers range from point mutations, which are often localized in the substrate translocation pore of the carrier, to large deletions and insertions. The biochemical consequences of deficient transport are the compartmentalized accumulation of the substrates and dysfunctional mitochondrial and cellular metabolism, which frequently develop into various forms of myopathy, encephalopathy, or neuropathy. Examples of diseases, due to mitochondrial carrier mutations are: combined D-2- and L-2-hydroxyglutaric aciduria, carnitine-acylcarnitine carrier deficiency, hyperornithinemia-hyperammonemia-homocitrillinuria (HHH) syndrome, early infantile epileptic encephalopathy type 3, Amish microcephaly, aspartate/glutamate isoform 1 deficiency, congenital sideroblastic anemia, Fontaine progeroid syndrome, and citrullinemia type II. Here, we review all the mitochondrial carrier-related diseases known until now, focusing on the connections between the molecular basis, altered metabolism, and phenotypes of these inherited disorders.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
- Correspondence: (F.P.); (M.M.); Tel.: +39-0805443323 (F.P.)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy;
- Department of Sciences, University of Basilicata, via Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (F.P.); (M.M.); Tel.: +39-0805443323 (F.P.)
| |
Collapse
|
33
|
Wang NL, Lu Y, Gong JY, Xie XB, Lin J, Abuduxikuer K, Zhang MH, Wang JS. Molecular findings in children with inherited intrahepatic cholestasis. Pediatr Res 2020; 87:112-117. [PMID: 31450232 DOI: 10.1038/s41390-019-0548-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genetic defects account for a substantial proportion of pediatric cholestasis. This study explored the molecular findings in a large cohort of Chinese patients with inherited cholestasis. METHODS Between January 2012 and June 2016, 809 Chinese pediatric patients with suspected inherited intrahepatic cholestasis were evaluated by Sanger sequencing and/or panel sequencing. RESULTS Of the 809 patients, 273 (33.7%) obtained a genetic diagnosis. The rate of positive genetic diagnosis in patients with disease onset at 0-3 month of age was higher than that in patients with disease onset at 4 month of age or later. There were 17 distinct genetic defects diagnosed. The top 4 resulted from mutations in SLC25A13 (44.3%), JAG1 (24.5%), ABCB11 (11.0%), and ATP8B1 (5.9%). All 17 genetic disorders were diagnosed in patients with disease onset at 0-3 months of age; but only 5 were diagnosed in patients with disease onset beyond 4 months of age. A total of 217 distinct pathogenic variants, including 41 novel variants, were identified. Ten recurrent mutations were detected in SLC25A13, ATP8B1, and CYP27A1. They accounted for 48.2% of the total 477 mutant alleles. CONCLUSIONS There were 17 distinct genetic disorders diagnosed in Chinese pediatric patients with inherited cholestasis.
Collapse
Affiliation(s)
- Neng-Li Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Lin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kuerbanjiang Abuduxikuer
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Wang T, Ma J, Zhang Q, Gao A, Wang Q, Li H, Xiang J, Wang B. Expanded Newborn Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry in Suzhou, China: Disease Spectrum, Prevalence, Genetic Characteristics in a Chinese Population. Front Genet 2019; 10:1052. [PMID: 31737040 PMCID: PMC6828960 DOI: 10.3389/fgene.2019.01052] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Expanded newborn screening for inborn errors of metabolism (IEMs) by tandem mass spectrometry (MS/MS) could simultaneously analyze more than 40 metabolites and identify about 50 kinds of IEMs. Next generation sequencing (NGS) targeting hundreds of IMEs-associated genes as a follow-up test in expanded newborn screening has been used for genetic analysis of patients. The spectrum, prevalence, and genetic characteristic of IEMs vary dramatically in different populations. To determine the spectrum, prevalence, and gene mutations of IEMs in newborns in Suzhou, China, 401,660 newborns were screened by MS/MS and 138 patients were referred to genetic analysis by NGS. The spectrum of 22 IEMs were observed in Suzhou population of newborns, and the overall incidence (excluding short chain acyl-CoA dehydrogenase deficiency (SCADD) and 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD)) was 1/3,163. The prevalence of each IEM ranged from 1/401,660 to 1/19,128, while phenylketonuria (PKU) (1/19,128) and Mild hyperphenylalaninemia (M-HPA) (1/19,128) were the most common IEMs, followed by primary carnitine uptake defect (PCUD) (1/26,777), SCADD (1/28,690), hypermethioninemia (H-MET) (1/30,893), 3-MCCD (1/33,412) and methylmalonic acidemia (MMA) (1/40,166). Moreover, 89 reported mutations and 51 novel mutations in 25 IMEs-associated genes were detected in 138 patients with one of 22 IEMs. Some hotspot mutations were observed for ten IEMs, including PAH gene c.728G > A, c.611A > G, and c.721C > T for Phenylketonuria, PAH gene c.158G > A, c.1238G > C, c.728G > A, and c.1315+6T > A for M-HPA, SLC22A5 gene c.1400C > G, c.51C > G, and c.760C > T for PCUD, ACADS gene c.1031A > G, c.164C > T, and c.1130C > T for SCAD deficiency, MAT1A gene c.791G > A for H-MET, MCCC1 gene c.639+2T > A and c.863A > G for 3-MCCD, MMUT gene c.1663G > A for MMA, SLC25A13 gene c.IVS16ins3Kb and c.852_855delTATG for cittrullinemia II, PTS gene c.259C > T and c.166G > A for Tetrahydrobiopterin deficiency, and ACAD8 gene c.1000C > T and c.286C > A for Isobutyryl coa dehydrogenase deficiency. All these hotspot mutations were reported to be pathogenic or likely pathogenic, except a novel mutation of ACAD8 gene c.286C > A. These mutational hotspots could be potential candidates for gene screening and these novel mutations expanded the mutational spectrum of IEMs. Therefore, our findings could be of value for genetic counseling and genetic diagnosis of IEMs.
Collapse
Affiliation(s)
- Ting Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Ma
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhang
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ang Gao
- Genetic Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qi Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Li
- Infertility Clinic, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Genetic Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Benjing Wang
- Newborn Screening Laboratory, Center for Reproduction and Genetics, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
35
|
Okano Y, Ohura T, Sakamoto O, Inui A. Current treatment for citrin deficiency during NICCD and adaptation/compensation stages: Strategy to prevent CTLN2. Mol Genet Metab 2019; 127:175-183. [PMID: 31255436 DOI: 10.1016/j.ymgme.2019.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/26/2022]
Abstract
Identification of the genes responsible for adult-onset type II citrullinemia (CTLN2) and citrin protein function have enhanced our understanding of citrin deficiency. Citrin deficiency is characterized by 1) neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD); 2) adaptation/compensation stage with unique food preference from childhood to adulthood; and 3) CTLN2. The treatment of NICCD aims to prevent the progression of cholestasis, and it includes medium chain triglycerides (MCT) milk and lactose-free milk, in addition to medications (e.g., vitamin K2, lipid-soluble vitamins and ursodeoxycholic acid). Spontaneous remission around the age of one is common in NICCD, though prolonged cholestasis can lead to irreversible liver failure and may require liver transplantation. The adaptation/compensation stage (after one year of age) is characterized by the various signs and symptoms such as hypoglycemia, fatty liver, easy fatigability, weight loss, and neuropsychiatric symptoms. Some poorly-controlled patients show failure to thrive and dyslipidemia caused by citrin deficiency (FTTDCD). Diet therapy is the key in the adaptation/compensation stage. Protein- and fat-rich diet with a protein: fat: carbohydrate ratio being 15-25%: 40-50%: 30-40% along with the appropriate energy intake is recommended. The use of MCT oil and sodium pyruvate is also effective. The toxicity of carbohydrate is well known in the progression to CTLN2 if the consumption is over a long term or intense. Alcohol can also trigger CTLN2. Continuous intravenous hyperalimentation with high glucose concentration needs to be avoided. Administration of Glyceol® (an osmotic agent containing glycerol and fructose) is contraindicated. Because the intense treatment such as liver transplantation may become necessary to cure CTLN2, the effective preventative treatment during the adaptation/compensation stage is very important. At present, there is no report of a case with patients reported having the onset of CTLN2 who are on the diet therapy and under the appropriate medical support during the adaptation/compensation stage.
Collapse
Affiliation(s)
- Yoshiyuki Okano
- Okano Children's Clinic, and Department of Pediatrics, Hyogo College of Medicine, 1-20-1 Izumifutyu, Izumi 594-0071, Japan.
| | - Toshihiro Ohura
- Division of Pediatrics, Sendai City Hospital, 1-1-1 Asutonagamachi, Taihaku-ku, Sendai 982-8502, Japan; Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai 980-8574, Japan
| | - Osamu Sakamoto
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryomachi, Aobaku, Sendai 980-8574, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| |
Collapse
|
36
|
Suzuki H, Kawamura Y, Kinowaki K, Akuta N, Kasuya K, Fujiyama S, Sezaki H, Hosaka T, Saitoh S, Kobayashi M, Kobayashi M, Arase Y, Ikeda K, Suzuki F, Suzuki Y, Kumada H. The Lack of Hepatocyte Steatosis in Adult-onset Type II Citrullinemia Patients as Assessed by 7-year Interval Paired Biopsies. Intern Med 2019; 58:1891-1895. [PMID: 30799367 PMCID: PMC6663524 DOI: 10.2169/internalmedicine.2374-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adult-onset type II citrullinemia (CTLN2) is a urea cycle disease characterized by neurological and psychiatric abnormalities associated with hyperammonemia. One of the pathological features of CTLN2 is the presence of hepatocyte steatosis. The condition progresses in almost all CTLN2 patients to nonalcoholic fatty liver disease (NAFLD). We herein report a 74-year-old woman who developed CTLN2 without hepatocyte steatosis. The diagnosis was based on clinical and laboratory findings and confirmed by two liver biopsies conducted within 7 years, as well as by a DNA analysis, which demonstrated mutations in the SLC25A13 gene. We describe a rare CTLN2 case without hepatocyte steatosis in an elderly woman who responded well to a low-carbohydrate diet.
Collapse
Affiliation(s)
| | | | | | - Norio Akuta
- Department of Hepatology, Toranomon Hospital, Japan
| | | | | | | | | | | | | | - Mariko Kobayashi
- Department of Liver Research Laboratory, Toranomon Hospital, Japan
| | - Yasuji Arase
- Department of Hepatology, Toranomon Hospital, Japan
| | - Kenji Ikeda
- Department of Hepatology, Toranomon Hospital, Japan
| | | | | | | |
Collapse
|
37
|
Chen JL, Zhang ZH, Li BX, Cai Z, Zhou QH. Bioinformatic and functional analysis of promoter region of human SLC25A13 gene. Gene 2019; 693:69-75. [PMID: 30708027 DOI: 10.1016/j.gene.2019.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
The human SLC25A13 gene encodes the liver type aspartate/glutamate carrier isoform 2 (AGC2, commonly named as citrin), which plays a key role in the main NADH-shuttle of human hepatocyte. Biallelic SLC25A13 mutations result in Citrin deficiency (CD). In order to identify the important regulatory region of SLC25A13 gene and elucidate the way how potential promoter mutations affect the citrin expression, we performed promoter deletion analysis and established the reporter constructs of luciferase gene-carrying SLC25A13 promoter containing several mutations located in putative transcription factor-binding sites. The luciferase activities of all promoter constructs were measured using a Dual-Luciferase Reporter Assay System. Bioinformatic analysis showed that the promoter of SLC25A13 gene lacks TATA box and obviously typical initiator element, but contains a CCAAT box and two GC box. Promoter deletion analysis confirmed the region from -221 to -1 upstream ATG was essential for SLC25A13 to maintain the promoter activity. We utilized dual-luciferase reporter system as function analytical model to tentatively assess the effect of artificially constructed promoter mutations on citrin expression, and our analysis revealed that mutated putative CCAAT box and GC box could significantly affect the citrin expression. Our study confirmed the important SLC25A13 promoter regions that influenced citrin expression in HL7702 cells, and constructed a function analytical model. This work may be useful to further identify the pathogenic mutations leading to CD in the promoter region.
Collapse
Affiliation(s)
- Jun-Lin Chen
- First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Zhan-Hui Zhang
- Clinical Medicine Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | - Bing-Xiao Li
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhen Cai
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qing-Hua Zhou
- First Affiliated Hospital, Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Estimating carrier frequencies of newborn screening disorders using a whole-genome reference panel of 3552 Japanese individuals. Hum Genet 2019; 138:389-409. [PMID: 30887117 DOI: 10.1007/s00439-019-01998-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Incidence rates of Mendelian diseases vary among ethnic groups, and frequencies of variant types of causative genes also vary among human populations. In this study, we examined to what extent we can predict population frequencies of recessive disorders from genomic data, and explored better strategies for variant interpretation and classification. We used a whole-genome reference panel from 3552 general Japanese individuals constructed by the Tohoku Medical Megabank Organization (ToMMo). Focusing on 32 genes for 17 congenital metabolic disorders included in newborn screening (NBS) in Japan, we identified reported and predicted pathogenic variants through variant annotation, interpretation, and multiple ways of classifications. The estimated carrier frequencies were compared with those from the Japanese NBS data based on 1,949,987 newborns from a previous study. The estimated carrier frequency based on genomic data with a recent guideline of variant interpretation for the PAH gene, in which defects cause hyperphenylalaninemia (HPA) and phenylketonuria (PKU), provided a closer estimate to that by the observed incidence than the other methods. In contrast, the estimated carrier frequencies for SLC25A13, which causes citrin deficiency, were much higher compared with the incidence rate. The results varied greatly among the 11 NBS diseases with single responsible genes; the possible reasons for departures from the carrier frequencies by reported incidence rates were discussed. Of note, (1) the number of pathogenic variants increases by including additional lines of evidence, (2) common variants with mild effects also contribute to the actual frequency of patients, and (3) penetrance of each variant remains unclear.
Collapse
|
39
|
Abuduxikuer K, Chen R, Wang ZL, Wang JS. Risk factors associated with mortality in neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and clinical implications. BMC Pediatr 2019; 19:18. [PMID: 30642297 PMCID: PMC6330752 DOI: 10.1186/s12887-018-1383-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) has high prevalence in East Asia, and has been reported in other parts of the world. NICCD is also the most common form of genetic cholestasis among East Asians. There has been reports of mortalities or liver transplants associated with NICCD, but risk factors associated with poor outcome were unknown. Our objective is to report NICCD mortalities in a tertiary pediatric hepatology center, and to explore associated risk factors along with implications to clinical practice. Method This is a retrospective analysis of NICCD cases collected from June 2003 until January 2017 in the Children’s Hospital of Fudan University. Clinical, biochemical, and genetic data were compared between deceased cases and survivors without liver transplant. Results Sixty-one confirmed NICCD cases, including 52 cases in the survival group, and 9 cases in the mortality group, were included in the analysis. Mean age at referral in the mortality group was significantly higher when compared to the survival group (9.58 ± 5.03 VS 3.96 ± 3.13 months, p < 0.000). The proportion with infection in the mortality group was significantly higher than the survival group (p = 0.023). 44.4% of patients in the mortality group did not receive lactose-free and/or medium chain triglycerides enriched (LF/MCT) formula, and this percentage was significantly higher than the survival group (9.6%, p = 0.021). Mean platelet (PLT) count in the mortality group was significantly lower than the survival group (p = 0.010). Mean serum gamma-glutamyl transpeptidase (GGT), and total cholesterol (TCH) levels were significantly lower in the mortality group when compared to the survival group with p values of 0.001, and 0.019, respectively. Those who died had higher serum ammonium levels than survivors (p = 0.016). Mean level of citrulline was significantly lower in the mortality group compared to the survival group (p = 0.010). On the other hand, mean level of tyrosine was significantly higher in the mortality group than that of the survival group (p = 0.015). Conclusion Late referral, presence of infection, delayed treatment with LF/MCT formula, lower platelet count, lower levels of GGT, total cholesterol, blood citrulline, and higher level of blood ammonia and tyrosine, were associated with poor prognosis in NICCD. Electronic supplementary material The online version of this article (10.1186/s12887-018-1383-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kuerbanjiang Abuduxikuer
- Department of Hepatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Rui Chen
- Department of Hepatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Zhong-Lin Wang
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Jian-She Wang
- Department of Hepatology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
40
|
Radha Rama Devi A, Naushad SM. SLC25A13 c.1610_1612delinsAT mutation in an Indian patient and literature review of 79 cases of citrin deficiency for genotype-phenotype associations. Gene 2018; 668:190-195. [PMID: 29787821 DOI: 10.1016/j.gene.2018.05.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 01/07/2023]
|
41
|
Hirayama S, Nagasaka H, Honda A, Komatsu H, Kodama T, Inui A, Morioka I, Kaji S, Ueno T, Ihara K, Yagi M, Kizaki Z, Bessho K, Kondou H, Yorifuji T, Tsukahara H, Iijima K, Miida T. Cholesterol Metabolism Is Enhanced in the Liver and Brain of Children With Citrin Deficiency. J Clin Endocrinol Metab 2018; 103:2488-2497. [PMID: 29659898 DOI: 10.1210/jc.2017-02664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/02/2018] [Indexed: 02/07/2023]
Abstract
CONTEXT Citrin-deficient infants present neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD), which resolves at 12 months. Thereafter, they have normal liver function associated with hypercholesterolemia, and a preference for lipid-rich carbohydrate-restricted diets. However, some develop adult-onset type II citrullinemia, which is associated with metabolic abnormalities. OBJECTIVES To identify the causes of hypercholesterolemia in citrin-deficient children post-NICCD. DESIGN AND SETTING We determined the concentrations of sterol markers of cholesterol synthesis, absorption, and catabolism by liquid chromatography-electrospray ionization-tandem mass spectrometry and evaluated serum lipoprotein profiles. SUBJECTS Twenty citrin-deficient children aged 5 to 13 years and 37 age-matched healthy children. INTERVENTION None. MAIN OUTCOME MEASURES Relationship between serum lipoproteins and sterol markers of cholesterol metabolism. RESULTS The citrin-deficient group had a significantly higher high-density lipoprotein cholesterol (HDL-C) concentration than did the control group (78 ± 11 mg/dL vs 62 ± 14 mg/dL, P < 0.001), whereas the two groups had similar low-density lipoprotein cholesterol and triglyceride concentrations. The concentrations of markers of cholesterol synthesis (lathosterol and 7-dehydrocholesterol) and bile acids synthesis (7α-hydroxycholesterol and 27-hydroxycholesterol) were 1.5- to 2.8-fold and 1.5- to 3.9-fold, respectively, higher in the citrin-deficient group than in the control group. The concentration of 24S-hydroxycholesterol, a marker of cholesterol catabolism in the brain, was 2.5-fold higher in the citrin-deficient group. In both groups, the HDL-C concentration was significantly positively correlated with that of 27-hydroxycholesterol, the first product of the alternative bile acid synthesis pathway. CONCLUSIONS HDL-C and sterol marker concentrations are elevated in citrin-deficient children post-NICCD. Moreover, cholesterol synthesis and elimination are markedly enhanced in the liver and brain of citrin-deficient children.
Collapse
Affiliation(s)
- Satoshi Hirayama
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hironori Nagasaka
- Department of Pediatrics, Takarazuka City Hospital, Takarazuka, Japan
| | - Akira Honda
- Joint Research Center and Division of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Haruki Komatsu
- Department of Pediatrics, Toho University Sakura Medical Center, Sakura, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, Okayama, Japan
| | - Tsuyoshi Ueno
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Ihara
- Department of Pediatrics, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
- Department of Pediatrics, Oita University, Faculty of Medicine, Yufu, Japan
| | - Mariko Yagi
- Department of Pediatrics, Nikoniko House Medical & Welfare Center, Kobe, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroki Kondou
- Department of Pediatrics, Kindai University Nara Hospital, Nara, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Li H, Qiu JW, Lin GZ, Deng M, Lin WX, Cheng Y, Song YZ. [Clinical and genetic analysis of a pediatric patient with sodium taurocholate cotransporting polypeptide deficiency]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018. [PMID: 29658451 DOI: 10.7499/j.issn.1008-8830.2018.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) deficiency is an inborn error of bile acid metabolism caused by mutations of SLC10A1 gene. This paper reports the clinical and genetic features of a patient with this disease. A 3.3-month-old male infant was referred to the hospital with the complaint of jaundiced skin and sclera over 3 months. Physical examination revealed moderate jaundice of the skin and sclera. The liver was palpable 3.5 cm below the right subcostal margin with a medium texture. Serum biochemistry analysis revealed markedly elevated bilirubin (predominantly direct bilirubin) and total bile acids (TBA), as well as decreased 25-OH-VitD level. On pathological analysis of the biopsied liver tissue, hepatocyte ballooning and cholestatic multinucleate giant cells were noted. The lobular architecture was distorted. Infiltration of inflammatory cells, predominantly lymphocytes, was seen in the portal tracts. In response to the anti-inflammatory and liver protective drugs as well as fat-soluble vitamins over 2 months, the bilirubin and transaminases levels were improved markedly while the TBA kept elevated. Because of persisting hypercholanemia on the follow-up, SLC10A1 gene analysis was performed at his age of 17.2 months. The child proved to be a homozygote of the reportedly pathogenic variant c.800C>T (p. Ser267Phe), while the parents were both carriers. NTCP deficiency was thus diagnosed. The infant was followed up until 34.3 months old. He developed well in terms of the anthropometric indices and neurobehavioral milestones. The jaundice disappeared completely. The liver size, texture and function indices all recovered. However, the hypercholanemia persisted, and the long-term outcome needs to be observed.
Collapse
Affiliation(s)
- Hua Li
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Early Detection and Diagnosis of Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency Missed by Newborn Screening Using Tandem Mass Spectrometry. Int J Neonatal Screen 2018; 4:5. [PMID: 33072931 PMCID: PMC7548893 DOI: 10.3390/ijns4010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/12/2018] [Indexed: 01/31/2023] Open
Abstract
Citrullinemia is the earliest identifiable biochemical abnormality in neonates with intrahepatic cholestasis due to a citrin deficiency (NICCD) and it has been included in newborn screening panels using tandem mass spectrometry. However, only one neonate was positive among 600,000 infants born in Sapporo city and Hokkaido, Japan between 2006 and 2017. We investigated 12 neonates with NICCD who were initially considered normal in newborn mass screening (NBS) by tandem mass spectrometry, but were later diagnosed with NICCD by DNA tests. Using their initial NBS data, we examined citrulline concentrations and ratios of citrulline to total amino acids. Although their citrulline values exceeded the mean of the normal neonates and 80% of them surpassed +3 SD (standard deviation), all were below the cutoff of 40 nmol/mL. The ratios of citrulline to total amino acids significantly elevated in patients with NICCD compared to the control. By evaluating two indicators simultaneously, we could select about 80% of patients with missed NICCD. Introducing an estimated index comprising citrulline values and citrulline to total amino acid ratios could assure NICCD detection by NBS.
Collapse
|
44
|
Zhang ZH, Lin WX, Zheng QQ, Guo L, Song YZ. Molecular diagnosis of citrin deficiency in an infant with intrahepatic cholestasis: identification of a 21.7kb gross deletion that completely silences the transcriptional and translational expression of the affected SLC25A13 allele. Oncotarget 2017; 8:87182-87193. [PMID: 29152073 PMCID: PMC5675625 DOI: 10.18632/oncotarget.19901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) arises from biallelic SLC25A13 mutations, and SLC25A13 analysis provides reliable evidences for NICCD definite diagnosis. However, novel large insertions/deletions in this gene could not be detected just by conventional DNA analysis. This study aimed to explore definite diagnostic evidences for an infant highly-suspected to have NICCD. Prevalent mutation screening and Sanger sequencing of SLC25A13 gene just revealed a paternally-inherited mutation c.851_854del4. Nevertheless, neither citrin protein nor SLC25A13 transcripts of maternal origin could be detected on Western blotting and cDNA cloning analysis, respectively. On this basis, the hidden maternal mutation was precisely positioned using SNP analysis and semi-quantitative PCR, and finally identified as a novel large deletion c.-3251_c.15+18443del21709bp, which involved the SLC25A13 promoter region and the entire exon 1 where locates the translation initiation codon. Hence, NICCD was definitely diagnosed in the infant. To the best of our knowledge, the novel gross deletion, which silenced the transcriptional and translational expression of the affected SLC25A13 allele, is the hitherto largest deletion in SLC25A13 mutation spectrum. The Western blotting approach using mitochondrial protein extracted from expanded peripheral blood lymphocytes, of particular note, might be a new minimally-invasive and more-feasible molecular tool for NICCD diagnosis.
Collapse
Affiliation(s)
- Zhan-Hui Zhang
- Clinical Medicine Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Wei-Xia Lin
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Qi-Qi Zheng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Li Guo
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
45
|
Lin WX, Zheng QQ, Guo L, Cheng Y, Song YZ. [Clinical feature and molecular diagnostic analysis of the first non-caucasian child with infantile liver failure syndrome type 1]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:913-920. [PMID: 28774368 PMCID: PMC7390053 DOI: 10.7499/j.issn.1008-8830.2017.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Infantile liver failure syndrome type 1 (ILFS1) is a Mendelian disease due to biallelic mutations in the cytoplasmic leucyl-tRNA synthetase gene (LARS). This study aimed to report the clinical and molecular features of the first non-caucasian ILFS1 patient, providing reliable evidences for the definite diagnosis of ILFS1. The 2 years and 9 months old male patient was referred to the hospital with hepatosplenomegaly over 1 year. At age 17 months, he was found to have hepatosplenomegaly and anemia. Since then, he had been managed in different hospitals. The laboratory tests showed liver dysfunction, hypoproteinemia, coagulopathy and anemia, along with histologically-confirmed cirrhosis and fatty liver; however, the etiology remained undetermined. The subsequent SLC25A13 mutation analysis by means of prevalent mutation screening and Sanger sequencing only revealed a paternally-inherited mutation c.1658G>A, and no aberrant SLC25A13 transcripts could be detected from the maternal allele on cDNA cloning analysis, ruling out the possibility of citrin deficiency. Further target exome high-throughout sequencing of genes relevant to genetic liver diseases detected a paternal c.2133_2135del (p.L712del) and a maternal c.1183G>A (p.D395N) mutation in LARS gene. This finding was then confirmed by Sanger sequencing, and ILFS1 was thus definitely diagnosed. The child has been followed up till age 4 years, and his condition became stabilized.
Collapse
Affiliation(s)
- Wei-Xia Lin
- Department of Pediatrics, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | | | | | | | | |
Collapse
|
46
|
Lu CT, Shi QP, Li ZJ, Li J, Feng L. Blood glucose and insulin and correlation of SLC25A13 mutations with biochemical changes in NICCD patients. Exp Biol Med (Maywood) 2017; 242:1271-1278. [PMID: 28516797 DOI: 10.1177/1535370217710918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a hereditary metabolic disease arising from biallelic mutations of SLC25A13. This study aimed to explore the characteristics of fasting blood glucose (FBG), fasting insulin (FINS) and C-peptide (C-P) levels in NICCD infants, analyze their SLC25A13 genetic mutations and further discuss the correlation between SLC25A13 genetic mutations and biochemical changes. Seventy-two cases of infants with cholestasis disease were gathered. Among them, 36 cases with NICCD diagnosis were case group. Meanwhile, 36 cases with unknown etiology but excluded NICCD were control group. FBG, FINS, C-P, ALT, AST, GGT, ALP, TG, HDL-C, LDL-C and Non-HDL-C were collected from all subjects, and DNA was extracted from venous blood for SLC25A13 mutations detection. The incidence of hypoglycemia was 3% in NICCD group. There were no significant statistical difference of FBG, FINS and C-P between NICCD and INC groups ( P > 0.05). ALT, LDL-C and Non-HDL-C levels in NICCD group were lower than the INC group, while SLC25A13 mutations were associated with the level of GGT ( P < 0.05). Ten different SLC25A13 genetic mutations were detected, among which, 851del4, IVS16ins3kb, IVS6+5 G > A and 1638ins23 mutations made up 82% of all mutations. The incidence of hypoglycemia may be higher in small gestational age infants with NICCD. Low LDL-C may be one of the characteristics of dyslipidemia in NICCD infants. There was a correlation between SLC25A13 gene mutations distribution and the GGT level, but the meaning of this finding remains to be further in-depth study. Impact statement This study aims to compare FBG, FINS, C-P, other biochemical and clinical manifestations between NICCD and non-NICCD infants, and discuss differential diagnosis of NICCD and INC beyond the genetic analysis. And investigate the correlation between SLC25A13 genetic mutations and biochemical changes. This work presented that incidence of hypoglycemia may be higher in small gestational age infants with NICCD. Low LDL-C may be one of the characteristics of dyslipidemia in NICCD infants. There was a correlation between SLC25A13 gene mutations distribution and the GGT level.
Collapse
Affiliation(s)
- Chun-Ting Lu
- 1 Science and Education Office, Jinan University, First Affiliated Hospital, Guangzhou 510630, China.,2 Department of Endocrinology and Metabolism, Jinan University, First Affiliated Hospital, Guangzhou 510630, China
| | - Qi-Ping Shi
- 2 Department of Endocrinology and Metabolism, Jinan University, First Affiliated Hospital, Guangzhou 510630, China
| | - Ze-Jian Li
- 3 Medical Centre of Stomatology, Jinan University, First Affiliated Hospital, Guangzhou 510630, China
| | - Jiong Li
- 4 Department of Anatomy, Medical School, Jinan University, Guangzhou 510630, China
| | - Lie Feng
- 2 Department of Endocrinology and Metabolism, Jinan University, First Affiliated Hospital, Guangzhou 510630, China
| |
Collapse
|
47
|
Oh SH, Lee BH, Kim GH, Choi JH, Kim KM, Yoo HW. Biochemical and molecular characteristics of citrin deficiency in Korean children. J Hum Genet 2016; 62:305-307. [DOI: 10.1038/jhg.2016.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022]
|
48
|
Zeng HS, Lin WX, Zhao ST, Zhang ZH, Yang HW, Chen FP, Song YZ, Yin ZN. SLC25A13 cDNA cloning analysis using peripheral blood lymphocytes facilitates the identification of a large deletion mutation: Molecular diagnosis of an infant with neonatal intrahepatic cholestasis caused by citrin deficiency. Mol Med Rep 2016; 14:5189-5194. [PMID: 27779681 DOI: 10.3892/mmr.2016.5873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/08/2016] [Indexed: 11/05/2022] Open
Abstract
Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder resulting from biallelic mutations of the SLC25A13 gene. Due to the lack of well‑recognized clinical or biochemical diagnostic criteria, the definitive diagnosis of this disease relies on the genetic analysis of SLC25A13 at present. As novel large deletion/insertion mutations of the SLC25A13 gene are difficult to detect using routine DNA analytic approaches, the timely diagnosis of patients with these types of mutations remains a challenge. The present study aimed to examine SLC25A13 mutations in an infant with a suspected diagnosis of NICCD. DNA was extracted from blood samples, and SLC25A13 mutations were examined by screening for high‑frequency mutations and Sanger sequencing. Reverse transcription-polymerase chain reaction and cDNA cloning analyses were then performed using peripheral blood lymphocytes (PBLs) to identify the obscure mutation. The results demonstrated that the infant was heterozygous for a paternally‑inherited mutation, c.851_854del4, and a maternally‑inherited large deletion, c.1019_1177+893del, which has not been reported previously. A positive diagnosis of NICCD was made, and the infant responded favorably to a galactose‑free and medium‑chain triglyceride‑enriched formula. The present study confirmed the effectiveness of this formula in NICCD therapy, enriched the SLC25A13 mutational spectrum and supported the feasibility of cDNA cloning analysis using PBLs as a molecular tool for facilitating the identification of large SLC25A13 deletions.
Collapse
Affiliation(s)
- Han-Shi Zeng
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wei-Xia Lin
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Shu-Tao Zhao
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhan-Hui Zhang
- Core Laboratory, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Heng-Wen Yang
- Biomedical Translational Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Feng-Ping Chen
- Department of Laboratory Science, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhi-Nan Yin
- Biomedical Translational Research Institute, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
49
|
Wang NL, Lu YL, Zhang P, Zhang MH, Gong JY, Lu Y, Xie XB, Qiu YL, Yan YY, Wu BB, Wang JS. A Specially Designed Multi-Gene Panel Facilitates Genetic Diagnosis in Children with Intrahepatic Cholestasis: Simultaneous Test of Known Large Insertions/Deletions. PLoS One 2016; 11:e0164058. [PMID: 27706244 PMCID: PMC5051675 DOI: 10.1371/journal.pone.0164058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Large indels are commonly identified in patients but are not detectable by routine Sanger sequencing and panel sequencing. We specially designed a multi-gene panel that could simultaneously test known large indels in addition to ordinary variants, and reported the diagnostic yield in patients with intrahepatic cholestasis. METHODS The panel contains 61 genes associated with cholestasis and 25 known recurrent large indels. The amplicon library was sequenced on Ion PGM system. Sequencing data were analyzed using a routine data analysis protocol and an internal program encoded for large indels test simultaneously. The validation phase was performed using 54 patients with known genetic diagnosis, including 5 with large insertions. At implement phase, 141 patients with intrahepatic cholestasis were evaluated. RESULTS At validation phase, 99.6% of the variations identified by Sanger sequencing could be detected by panel sequencing. Following the routine protocol, 99.8% of false positives could be filtered and 98.8% of retained variations were true positives. Large insertions in the 5 patients with known genetic diagnosis could be correctly detected using the internal program. At implementation phase, 96.9% of the retained variations, following the routine protocol, were confirmed to be true. Twenty-nine patients received a potential genetic diagnosis when panel sequencing data were analyzed using the routine protocol. Two additional patients, who were found to harbor large insertions in SLC25A13, obtained a potential genetic diagnosis when sequencing data were further analyzed using the internal program. A total of 31 (22.0%) patients obtained a potential genetic diagnosis. Nine different genetic disorders were diagnosed, and citrin deficiency was the commonest. CONCLUSION Specially designed multi-gene panel can correctly detect large indels simultaneously. By using it, we assigned a potential genetic diagnosis to 22.0% of patients with intrahepatic cholestasis.
Collapse
Affiliation(s)
- Neng-Li Wang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yu-Lan Lu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
| | - Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Yan-Yan Yan
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, China
| | - Bing-bing Wu
- The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (JSW); (BBW)
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: (JSW); (BBW)
| |
Collapse
|
50
|
Identification of a Large SLC25A13 Deletion via Sophisticated Molecular Analyses Using Peripheral Blood Lymphocytes in an Infant with Neonatal Intrahepatic Cholestasis Caused by Citrin Deficiency (NICCD): A Clinical and Molecular Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4124263. [PMID: 27127784 PMCID: PMC4835617 DOI: 10.1155/2016/4124263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022]
Abstract
Background. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a Mendelian disorder arising from biallelic SLC25A13 mutations, and SLC25A13 genetic analysis was indispensable for its definite diagnosis. However, conventional SLC25A13 analysis could not detect all mutations, especially obscure large insertions/deletions. This paper aimed to explore the obscure SLC25A13 mutation in an NICCD infant. Methods. Genomic DNA was extracted to screen for 4 high-frequency SLC25A13 mutations, and then all 18 exons and their flanking sequences were analyzed by Sanger sequencing. Subsequently, cDNA cloning, SNP analyses, and semiquantitative PCR were performed to identify the obscure mutation. Results. A maternally inherited mutation IVS16ins3kb was screened out, and then cDNA cloning unveiled paternally inherited alternative splicing variants (ASVs) featuring exon 5 skipping. Ultimately, a large deletion c.329-1687_c.468+3865del5692bp, which has never been described in any other references, was identified via intensive study on the genomic DNA around exon 5 of SLC25A13 gene. Conclusions. An NICCD patient was definitely diagnosed as a compound heterozygote of IVS16ins3kb and c.329-1687_c.468+3865del5692bp. The large deletion enriched the SLC25A13 mutation spectrum, and its identification supported the concept that cDNA cloning analysis, along with other molecular tools such as semiquantitative PCR, could provide valuable clues, facilitating the identification of obscure SLC25A13 deletions.
Collapse
|