1
|
Miyagawa S, Kainuma S, Imanishi Y, Shimamoto T, Nitta Y, Matsuo C, Sakata Y, Takeuchi M, Sawa Y. Prognosis of Patients With Heart Failure Receiving Autologous Myoblast Patches - Comparison of Single-Arm Trial Data to Registry Data. Circ J 2023; 87:481-486. [PMID: 36384895 DOI: 10.1253/circj.cj-22-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Clinical studies in regenerative medicine remain insufficient in Japan due to ethical concerns regarding the control group and a lack of statistical methodology to evaluate efficacy in a small treatment group. This study evaluated the efficacy of autologous myoblast patch (AMP) treatment for heart failure using restricted mean survival time (RMST) analysis by comparing data from a small single-arm trial to epidemiological data from a registry. METHODS AND RESULTS The clinical trial arm included 55 patients with advanced ischemic cardiomyopathy who received an AMP between 2010 and 2020. The registry-based control group comprised 937 participants with severely impaired left ventricular function who were hospitalized for heart failure during the study period. Due to the limited number of patients, RMST analysis was used to compare survival between the 2 groups. Cox regression analyses revealed non-significant differences in survival between the groups at 3, 3.5, and 4 years. In contrast, RMST analyses revealed significant differences in survival at 3 years (P=0.008) and 3.5 (P=0.024) years, but not at 4 years. CONCLUSIONS This small single-arm trial using RMST analyses was able to detect the efficacy of AMP transplantation for advanced heart failure (compared with a registry-based control group), with better survival until 3.5 years. This approach may be useful for efficacy analyses in regenerative medicine, where traditional clinical trials are difficult.
Collapse
Affiliation(s)
- Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Satoshi Kainuma
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yukiko Imanishi
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Tomomi Shimamoto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yukako Nitta
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Chikako Matsuo
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | | | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| |
Collapse
|
2
|
Ikushima E, Ishikane S, Kishigami T, Matsunaga H, Igawa K, Tomooka K, Nishimura Y, Takahashi-Yanaga F. 2,5-Dimethylcelecoxib attenuates cardiac fibrosis caused by cryoinjury-induced myocardial infarction by suppressing the fibroblast-to-myofibroblast transformation via inhibition of the TGF-β signaling pathway. Biochem Pharmacol 2022; 197:114950. [PMID: 35143754 DOI: 10.1016/j.bcp.2022.114950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/25/2022]
Abstract
We previously reported that 2,5-dimethylcelecoxib (DM-C), a derivative of celecoxib, lacks cyclooxygenase-2 inhibitory effects and suppresses cardiac remodeling by activating glycogen synthase kinase-3 (GSK-3). However, it remains unclear whether DM-C attenuates fibroblast-to-myofibroblast transformation (FMT), which plays a key role in cardiac fibrosis. Therefore, we evaluated the effect of DM-C on FMT using a cryoinjury-induced myocardial infarction (CMI) mouse model. We found that DM-C attenuated the deterioration of left ventricular ejection fraction after CMI by decreasing cardiac fibrosis. Analysis of the expression level of α-smooth muscle actin (α-SMA), a marker for myofibroblasts, indicated that DM-C decreased FMT at the cardiac injury site. To investigate the mechanism by which DM-C attenuated FMT, fibroblasts obtained from the heart were stimulated with TGF-β to induce FMT, and the effect of DM-C was analyzed. DM-C suppressed the expression of α-SMA and the phosphorylation levels of Smad 2/3 and GSK-3, indicating that DM-C suppressed α-SMA expression by inhibiting the transforming growth factor (TGF)-β signaling pathway via activation of GSK-3. DM-C decreased the expression of collagen, connective tissue growth factor (CTGF) and Snail, which are also known to accelerate cardiac fibrosis. These results suggested that DM-C attenuated cardiac fibrosis by suppressing FMT at the injured site after CMI by inhibiting the TGF-β signaling pathway via activation of GSK-3. Thus, DM-C has potential against cardiac disease as a novel anti-fibrotic agent.
Collapse
Affiliation(s)
- Eigo Ikushima
- Department of Pharmacology, Graduate School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, Japan; Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Shin Ishikane
- Department of Pharmacology, Graduate School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Takehiro Kishigami
- Department of Pharmacology, Graduate School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, Japan; Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Hiroaki Matsunaga
- Department of Pharmacology, Graduate School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Kazunobu Igawa
- Department of Molecular and Material Science, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Katsuhiko Tomooka
- Department of Molecular and Material Science, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Yosuke Nishimura
- Department of Cardiovascular Surgery, School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, Graduate School of Medicine, University of Occupational and Environmental Health, Japan, Fukuoka, Japan.
| |
Collapse
|
3
|
Murata K, Ikegawa M, Minatoya K, Masumoto H. Strategies for immune regulation in iPS cell-based cardiac regenerative medicine. Inflamm Regen 2020; 40:36. [PMID: 33005258 PMCID: PMC7523082 DOI: 10.1186/s41232-020-00145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/09/2020] [Indexed: 01/14/2023] Open
Abstract
Cardiac regenerative therapy is expected to be a promising therapeutic option for the treatment of severe cardiovascular diseases. Artificial tissues or organoids made from cardiovascular cell lineages differentiated from human induced pluripotent stem cells (iPSCs) are expected to regenerate the damaged heart. Even though immune rejection rarely occurs when iPSC-derived graft and the recipient have the same HLA type, in some cases, such as tissue transplantation onto hearts, the HLA matching would not be sufficient to fully control immune rejection. The present review introduces recent immunomodulatory strategies in iPSC-based transplantation therapies other than MHC matching including the induction of immune tolerance through iPSC-derived antigen-presenting cells, simultaneous transplantation of syngeneic mesenchymal stem cells, and using the universal donor cells such as gene editing-based HLA modulation in iPSCs to regulate T cell compatibility. In addition, we present future perspectives for proper adjustment of immunosuppression therapy after iPSC-derived tissue/organoid-based cardiac regenerative therapies by identifying biomarkers monitoring immune rejection.
Collapse
Affiliation(s)
- Kozue Murata
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan.,Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Masaya Ikegawa
- Department of Life and Medical Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kenji Minatoya
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidetoshi Masumoto
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan.,Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|