1
|
Yamamoto T, Emoto Y, Murase T, Umehara T, Miura A, Nishiguchi M, Ikematsu K, Nishio H. Molecular autopsy for sudden death in Japan. J Toxicol Pathol 2024; 37:1-10. [PMID: 38283375 PMCID: PMC10811381 DOI: 10.1293/tox.2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/17/2023] [Indexed: 01/30/2024] Open
Abstract
Japan has various death investigation systems; however, external examinations, postmortem computed tomography, macroscopic examinations, and microscopic examinations are performed regardless of the system used. These examinations can reveal morphological abnormalities, whereas the cause of death in cases with non-morphological abnormalities can be detected through additional examinations. Molecular autopsy and postmortem genetic analyses are important additional examinations. They are capable of detecting inherited arrhythmias or inherited metabolic diseases, which are representative non-morphological disorders that cause sudden death, especially in infants and young people. In this review, we introduce molecular autopsy reports from Japan and describe our experience with representative cases. The relationships between drug-related deaths and genetic variants are also reviewed. Based on the presented information, molecular autopsy is expected to be used as routine examinations in death investigations because they can provide information to save new lives.
Collapse
Affiliation(s)
- Takuma Yamamoto
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Yuko Emoto
- Department of Legal Medicine, Kansai Medical University,
2-5-1 Shinmachi, Hirakata-shi, Osaka 573-1010, Japan
| | - Takehiko Murase
- Division of Forensic Pathology and Science, Department of
Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine,
Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Takahiro Umehara
- Department of Forensic Medicine, School of Medicine,
University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku,
Kitakyushu-shi, Fukuoka 807-8555, Japan
| | - Aya Miura
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Minori Nishiguchi
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Department of
Medical and Dental Sciences, Graduate School of Biomedical Sciences, School of Medicine,
Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki 852-8523, Japan
| | - Hajime Nishio
- Department of Legal Medicine, Hyogo College of Medicine, 1-1
Mukogawa-cho, Nishinomiya-shi, Hyogo 663-8501, Japan
| |
Collapse
|
2
|
Almeida SM, Ivantsiv S, Niibori R, Dunham WH, Green BA, Zhao L, Gingras AC, Cordes SP. An interaction between OTULIN and SCRIB uncovers roles for linear ubiquitination in planar cell polarity. Dis Model Mech 2023; 16:dmm049762. [PMID: 37589075 PMCID: PMC10445738 DOI: 10.1242/dmm.049762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
Planar cell polarity (PCP) plays critical roles in developmental and homeostatic processes. Membrane presentation of PCP complexes containing Van Gogh-like (VANGL) transmembrane proteins is central to PCP and can be directed by the scaffold protein scribble (SCRIB). The role atypical linear ubiquitin (Met1-Ub) chains might play in PCP is unknown. Here, HEK293 cell-based interactomic analyses of the Met1-Ub deubiquitinase OTULIN revealed that OTULIN can interact with SCRIB. Moreover, Met1-Ub chains associated with VANGL2 and PRICKLE1, but not SCRIB, can direct VANGL2 surface presentation. Mouse embryos lacking Otulin showed variable neural tube malformations, including rare open neural tubes, a deficit associated with PCP disruption in mice. In Madin-Darby canine kidney cells, in which the enrichment of VANGL2-GFP proteins at cell-cell contacts represents activated PCP complexes, endogenous OTULIN was recruited to these sites. In the human MDA-MB-231 breast cancer cell model, OTULIN loss caused deficits in Wnt5a-induced filopodia extension and trafficking of transfected HA-VANGL2. Taken together, these findings support a role for linear (de)ubiquitination in PCP signaling. The association of Met1-Ub chains with PCP complex components offers new opportunities for integrating PCP signaling with OTULIN-dependent immune and inflammatory pathways.
Collapse
Affiliation(s)
- Stephanie M. Almeida
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofiia Ivantsiv
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Wade H. Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brooke A. Green
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liang Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabine P. Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Chen Z, Luo S, Liu ZG, Deng YC, He SL, Liu XR, Yi YH, Wang J, Gao LD, Li BM, Wu ZJ, Ye ZL, Liang DH, Bian WJ, Liao WP. CELSR1 variants are associated with partial epilepsy of childhood. Am J Med Genet B Neuropsychiatr Genet 2022; 189:247-256. [PMID: 36453712 DOI: 10.1002/ajmg.b.32916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/25/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
CELSR1 gene, encoding cadherin EGF LAG seven-pass G-type receptor 1, is mainly expressed in neural stem cells during the embryonic period. It plays an important role in neurodevelopment. However, the relationship between CELSR1 and disease of the central nervous system has not been defined. In this study, we performed trios-based whole-exome sequencing in a cohort of 356 unrelated cases with partial epilepsy without acquired causes and identified CELSR1 variants in six unrelated cases. The variants included one de novo heterozygous nonsense variant, one de novo heterozygous missense variant, and four compound heterozygous missense variants that had one variant was located in the extracellular region and the other in the cytoplasm. The patients with biallelic variants presented severe epileptic phenotypes, whereas those with heterozygous variants were associated with a mild epileptic phenotype of benign epilepsy with centrotemporal spikes (BECTS). These variants had no or low allele frequency in the gnomAD database. The frequencies of the CELSR1 variants in this cohort were significantly higher than those in the control populations. The evidence from ClinGen Clinical-Validity Framework suggested a strong association between CELSR1 variants and epilepsy. These findings provide evidence that CELSR1 is potentially a candidate pathogenic gene of partial epilepsy of childhood.
Collapse
Affiliation(s)
- Zheng Chen
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China.,Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Luo
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yan-Chun Deng
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Su-Li He
- Department of Pediatrics, Shantou Chaonan Minsheng Hospital, Shantou, China
| | - Xiao-Rong Liu
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - Liang-Di Gao
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - Bing-Mei Li
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - Zhi-Jun Wu
- Department of Neurology, Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Zi-Long Ye
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - De-Hai Liang
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - Wen-Jun Bian
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, The Ministry of Education of China, Guangzhou, China
| | | |
Collapse
|