1
|
Wu H, Zhou M, Ye X, Chen H, Lin H, Wang L, Nie X, Zhang L. Compound heterozygous variants of the NARS2 gene in siblings with refractory seizures: two case report and literature review. Front Pediatr 2025; 13:1571426. [PMID: 40264468 PMCID: PMC12011721 DOI: 10.3389/fped.2025.1571426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Background Biallelic variants in NARS2 that encodes the mitochondrial asparaginyl-tRNA synthetase are associated with a wide spectrum of clinical phenotypes. Herein, we report on two siblings carrying the same compound heterozygous missense variants in NARS2, to improve the understanding of the phenotypic heterogeneity of NARS2 variants. Case presentation The two probands, a 3-year-old female (Patient 1) and a 16-month-old male (Patient 2), were clinically suspected of Combined oxidative phosphorylation deficiency 24 (COXPD24). Both presented with neurological manifestations, including refractory epilepsy, developmental delay and motor developmental regression, within the first year of life, accompanied by symmetrical brain lesions identified on magnetic resonance imaging (MRI). To elucidate the underlying genetic etiology, whole-exome sequencing (WES) was performed, followed by Sanger sequencing validation in the patients and their non-consanguineous parents. Genetic analysis revealed that both probands harbored identical compound heterozygous variants in the NARS2 gene: c.1253G>A (p.Arg418His) and c.1163C>T (p.Thr388Met). Notably, the c.1163C>T (p.Thr388Met) variant in NARS2 represents a novel finding, further expanding the genetic spectrum associated with this disorder. Conclusions Our findings expand the mutational spectrum of NARS2 and highlight the associated phenotypic heterogeneity, underscoring the critical role of NARS2 in epilepsy and neurodevelopmental processes. For pediatric patients with refractory epilepsy, early genetic testing is essential to improve diagnostic accuracy, refine prognostic stratification, and guide personalized treatment strategies. Additionally, mitochondrial drug cocktail therapy may be beneficial for epilepsy caused by NARS2 mutations.
Collapse
Affiliation(s)
- Heyan Wu
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Min Zhou
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoting Ye
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huabao Chen
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hongxin Lin
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Li Wang
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing Nie
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Lidan Zhang
- Pediatric Intensive Care Unit, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Kinsey N, Belanger JM, Oberbauer AM. Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs. Genes (Basel) 2024; 15:1474. [PMID: 39596674 PMCID: PMC11593353 DOI: 10.3390/genes15111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Idiopathic epilepsy (IE) disproportionately affects Belgian shepherd dogs and although genomic risk markers have been identified previously in the breed, causative variants have not been described. METHODS The current study analyzed differences in whole blood RNA expression associated with IE and with a previously identified IE risk haplotype on canine chromosome (CFA) 14 using a transcriptomics RNA-seq approach. RESULTS MFSD2A and a likely pseudogene of RPL19, both of which are genes implicated in seizure activity, were upregulated in dogs with IE. Genes in the interferon signaling pathway were downregulated in Belgian shepherds with IE. The CFA14 risk haplotype was associated with upregulation of CLIC1, ACE2, and PIGN and downregulation of EPDR1, all known to be involved with epilepsy or the Wnt/β-catenin signaling pathway. CONCLUSIONS These results highlight the value of assessing gene expression in canine IE research to uncover genomic contributory factors.
Collapse
Affiliation(s)
| | | | - Anita M. Oberbauer
- Department of Animal Science, University of California, Davis, CA 95616, USA; (N.K.); (J.M.B.)
| |
Collapse
|
4
|
Nogueira C, Pereira C, Silva L, Laranjeira M, Lopes A, Neiva R, Rodrigues E, Campos T, Martins E, Bandeira A, Coelho M, Magalhães M, Damásio J, Gaspar A, Janeiro P, Gomes AL, Ferreira AC, Jacinto S, Vieira JP, Diogo L, Santos H, Mendonça C, Vilarinho L. The genetic landscape of mitochondrial diseases in the next-generation sequencing era: a Portuguese cohort study. Front Cell Dev Biol 2024; 12:1331351. [PMID: 38465286 PMCID: PMC10920333 DOI: 10.3389/fcell.2024.1331351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Rare disorders that are genetically and clinically heterogeneous, such as mitochondrial diseases (MDs), have a challenging diagnosis. Nuclear genes codify most proteins involved in mitochondrial biogenesis, despite all mitochondria having their own DNA. The development of next-generation sequencing (NGS) technologies has revolutionized the understanding of many genes involved in the pathogenesis of MDs. In this new genetic era, using the NGS approach, we aimed to identify the genetic etiology for a suspected MD in a cohort of 450 Portuguese patients. Methods: We examined 450 patients using a combined NGS strategy, starting with the analysis of a targeted mitochondrial panel of 213 nuclear genes, and then proceeding to analyze the whole mitochondrial DNA. Results and Discussion: In this study, we identified disease-related variants in 134 (30%) analyzed patients, 88 with nuclear DNA (nDNA) and 46 with mitochondrial DNA (mtDNA) variants, most of them being pediatric patients (66%), of which 77% were identified in nDNA and 23% in mtDNA. The molecular analysis of this cohort revealed 72 already described pathogenic and 20 novel, probably pathogenic, variants, as well as 62 variants of unknown significance. For this cohort of patients with suspected MDs, the use of a customized gene panel provided a molecular diagnosis in a timely and cost-effective manner. Patients who cannot be diagnosed after this initial approach will be further selected for whole-exome sequencing. Conclusion: As a national laboratory for the study and research of MDs, we demonstrated the power of NGS to achieve a molecular etiology, expanding the mutational spectrum and proposing accurate genetic counseling in this group of heterogeneous diseases without therapeutic options.
Collapse
Affiliation(s)
- C. Nogueira
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - C. Pereira
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - L. Silva
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Mateus Laranjeira
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - A. Lopes
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - R. Neiva
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - E. Rodrigues
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, Porto, Portugal
| | - T. Campos
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, Porto, Portugal
| | - E. Martins
- Inherited Metabolic Diseases Reference Centre, Santo António Hospital University Centre, Porto, Portugal
| | - A. Bandeira
- Inherited Metabolic Diseases Reference Centre, Santo António Hospital University Centre, Porto, Portugal
| | - M. Coelho
- Inherited Metabolic Diseases Reference Centre, Santo António Hospital University Centre, Porto, Portugal
| | - M. Magalhães
- Neurology Department, Santo António Hospital University Centre, Porto, Portugal
| | - J. Damásio
- Neurology Department, Santo António Hospital University Centre, Porto, Portugal
| | - A. Gaspar
- Inherited Metabolic Diseases Reference Centre, Lisboa Norte Hospital University Centre, Lisboa, Portugal
| | - P Janeiro
- Inherited Metabolic Diseases Reference Centre, Lisboa Norte Hospital University Centre, Lisboa, Portugal
| | - A. Levy Gomes
- Neurology Department, Lisboa Norte Hospital University Centre, Lisboa, Portugal
| | - A. C. Ferreira
- Inherited Metabolic Diseases Reference Centre, Lisboa Central Hospital Centre, Lisboa, Portugal
| | - S. Jacinto
- Inherited Metabolic Diseases Reference Centre, Lisboa Central Hospital Centre, Lisboa, Portugal
| | - J. P. Vieira
- Inherited Metabolic Diseases Reference Centre, Lisboa Central Hospital Centre, Lisboa, Portugal
| | - L. Diogo
- Inherited Metabolic Diseases Reference Centre, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - H. Santos
- Inherited Metabolic Diseases Reference Centre, Vila Nova de Gaia Hospital Centre, Vila Nova de Gaia, Portugal
| | - C. Mendonça
- Pediatric Department, Faro Hospital and University Centre, Faro, Portugal
| | - L. Vilarinho
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Newborn Screening, Metabolism & Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
5
|
Yang N, Chen L, Zhang Y, Wu X, Hao Y, Yang F, Yang Z, Liang J. Novel NARS2 variants in a patient with early-onset status epilepticus: case study and literature review. BMC Pediatr 2024; 24:96. [PMID: 38310242 PMCID: PMC10837881 DOI: 10.1186/s12887-024-04553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND NARS2 as a member of aminoacyl-tRNA synthetases was necessary to covalently join a specific tRNA to its cognate amino acid. Biallelic variants in NARS2 were reported with disorders such as Leigh syndrome, deafness, epilepsy, and severe myopathy. CASE PRESENTATION Detailed clinical phenotypes were collected and the NARS2 variants were discovered by whole exome sequencing and verified by Sanger sequencing. Additionally, 3D protein structure visualization was performed by UCSF Chimera. The proband in our study had early-onset status epilepticus with abnormal EEG and MRI results. She also performed global developmental delay (GDD) and myocardial dysfunction. Next-generation sequencing (NGS) and Sanger sequencing revealed compound heterozygous missense variants [NM_024678.6:exon14: c.1352G > A(p.Arg451His); c.707T > C(p.Phe236Ser)] of the NARS2 gene. The proband develops refractory epilepsy with GDD and hyperlactatemia. Unfortunately, she finally died for status seizures two months later. CONCLUSION We discovered two novel missense variants of NARS2 in a patient with early-onset status epilepticus and myocardial dysfunction. The NGS enables the patient to be clearly diagnosed as combined oxidative phosphorylation deficiency 24 (COXPD24, OMIM:616,239), and our findings expands the spectrum of gene variants in COXPD24.
Collapse
Affiliation(s)
- Nuo Yang
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China
| | - Limin Chen
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun, 130021, China
| | - Yanfeng Zhang
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China
| | - Xuemei Wu
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China
| | - Yunpeng Hao
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China
| | - Fan Yang
- Cipher Gene LLC, Beijing, 100089, China
| | | | - Jianmin Liang
- Department of Pediatric Neurology, First hospital of Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| |
Collapse
|
6
|
Lin Z, Liu L, Li X, Huang S, Zhao H, Zeng S, Yang H, Xie Y, Zhang R. Phenotype-driven reanalysis reveals five novel pathogenic variants in 40 exome-negative families with Charcot-Marie-Tooth Disease. J Neurol 2024; 271:497-503. [PMID: 37776383 DOI: 10.1007/s00415-023-11991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND To identify genetic causes in 40 whole exome sequencing (WES)-negative Charcot-Marie-Tooth (CMT) families and provide a summary of the clinical and genetic features of the diagnosed patients. METHODS The clinical information and sequencing data of 40 WES-negative families out of 131 CMT families were collected, and phenotype-driven reanalysis was conducted using the Exomiser software. RESULTS The molecular diagnosis was regained in 4 families, increasing the overall diagnosis rate by 3.0%. One family with adolescent-onset pure CMT1 was diagnosed [POLR3B: c.2810G>A (p.R937Q)] due to the novel genotype-phenotype association. One infantile-onset, severe CMT1 family with deep sensory disturbance was diagnosed by screening the BAM file and harbored c.1174C>T (p.R392*) and 875_927delinsCTGCCCACTCTGCCCACTCTGCCCACTCTG (p.V292Afs53) of PRX. Two families were diagnosed due to characteristic phenotypes, including an infantile-onset ICMT family with renal dysfunction harboring c.213_233delinsGAGGAGCA (p.S72Rfs34) of INF2 and an adolescent-onset CMT2 family with optic atrophy harboring c.560C>T (p.P187L) and c.616A>G (p.K206E) of SLC25A46. According to the American College of Medical Genetics and Genomics (ACMG) guidelines, the variants of POLR3B and SLC25A46 were classified as likely pathogenic, and the variants of INF2 and PRX were pathogenic. All these variants were first reported worldwide except for p.R392* of PRX. CONCLUSIONS We identified five novel pathogenic variants in POLR3B, PRX, INF2, and SLC25A46, which broaden their phenotypic and genotypic spectrums. Regular phenotype-driven reanalysis is a powerful strategy for increasing the diagnostic yield of WES-negative CMT patients, and long-term follow-up and screening BAM files for contiguous deletion and missense variants are both essential for reanalysis.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lei Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Sen Zeng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Honglan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
7
|
Khodaeian M, Bitarafan F, Garrousi F, Sardehie EA, Pak N, Hosseinpour S, Shakiba M, Falah M, Garshasbi M, Tavasoli AR. Expanding phenotype heterogeneity of NARS2 by presenting subdural hematoma and parenchymal hemorrhage. J Clin Lab Anal 2023; 37:e24983. [PMID: 37950505 PMCID: PMC10749492 DOI: 10.1002/jcla.24983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND NARS2 encodes mitochondrial Asparaginyl-tRNA Synthetase 2, which catalyzes the aminoacylation of tRNA-Asn in the mitochondria. To date, 24 variants have been reported in NARS2 gene in 35 patients. The phenotypic variability of NARS2-associated disorder is broad, ranging from neurodevelopmental disorders to hearing loss. In this study, we report some novel imaging findings in an Iranian patient suffering from epileptic encephalopathy, caused by a previously reported variant, c.500A > G; p.(His167Arg), in NARS2. METHODS The spectrum of clinical manifestations of two Iranian patients was investigated and genetic analysis was performed by Whole-exome sequencing (WES). Additionally, we also reviewed the literature and summarized the phenotypes of previously reported patients with variants in the NARS2 gene. RESULTS Here, we present the phenotypic and genetic features of 2 unrelated Iranian infants presented with neurodevelopmental delay, seizures, hearing impairment, feeding problems, elevated serum lactate levels in addition to subdural hematoma and cerebral parenchymal hemorrhage in the brain magnetic resonance imaging (MRI) of one of the patients. Genetic analysis revealed a biallelic missense variant in NARS2: c.500A > G; p.(His167Arg). We described the subdural hematoma and cerebral parenchymal hemorrhage of the brain for the first time. CONCLUSIONS Our study provides new clinical findings, subdural hematoma, and parenchymal hemorrhage, in NARS2-related disorders. Our findings along with previous studies provide more evidence of the clinical presentation of the disease caused by pathogenic variants in NARS2. Expanding the clinical spectrum increases the diagnostic rate of molecular testing and improves the quality of counseling for at-risk couples.
Collapse
Affiliation(s)
| | - Fatemeh Bitarafan
- Department of Medical GeneticsOslo University Hospital and University of Oslo0450OsloNorway
| | | | | | - Neda Pak
- Pediatric Radiology Division, Children's Medical Center, Pediatrics Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Sareh Hosseinpour
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of ExcellenceTehran University of Medical SciencesTehranIran
| | - Marjan Shakiba
- Department of Pediatric Endocrinology and Metabolism, Mofid Children's HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Hazrat Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTeheranIran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of ExcellenceTehran University of Medical SciencesTehranIran
- Department of Neurology, Barrow Neurological InstitutePhoenix Children's HospitalPhoenixArizonaUSA
| |
Collapse
|
8
|
Finsterer J, Mehri S. Progressive Mitochondrial Encephalopathy Due to the Novel Compound Heterozygous Variants c.182C>T and c.446A>AG in NARS2: A Case Report. Cureus 2023; 15:e43969. [PMID: 37746452 PMCID: PMC10515475 DOI: 10.7759/cureus.43969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/26/2023] Open
Abstract
Progressive mitochondrial encephalopathy manifesting as developmental delay, regression, epilepsy, myoclonus, dystonia, and spasticity due to a novel compound heterozygous variant in NARS2 has not been reported. The patient is a 3.5-year-old female with normal psychomotor development until she experienced her first generalized status epilepticus at 4.5 months of age. After seizure control, generalized myoclonus and psychomotor regression became evident. She suffered from two other epileptic states and seizure control remained inadequate despite the use of multiple anti-seizure drugs. Neurologic examination revealed generalized hypotonia, discoordination, unstable eye contact, drooling, open mouth, myoclonus, periodic torticollis, and ankle contractions. Cerebral MRI revealed hydrocephalus ex vacuo due to diffuse cortical and subcortical atrophy bilaterally and incomplete myelination. Genetic testing at 12 months of age revealed the compound heterozygous variants chr11: 78204182C>T and chr11: 78282446A>AG in NARS2. Despite anti-seizure drugs, mitochondrial cocktail, and cannabidiol, the disease progressed to intractable seizures and severe tetraspasticity. In summary, this case demonstrates that compound heterozygous variants in NARS2 can phenotypically manifest exclusively in the brain with intractable epilepsy, myoclonus, developmental delay, regression, hypotonia, cerebral atrophy, and hypomyelination, followed by tetraspasticity and dystonia.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology, Neurology and Neurophysiology Center, Vienna, AUT
| | - Sounira Mehri
- Nutrition-Functional Foods and Vascular Health, Biochemistry Laboratory, Faculty of Medicine of Monastir, Monastir, TUN
| |
Collapse
|
9
|
Hu W, Fang H, Peng Y, Li L, Guo D, Tang J, Yi J, Liu Q, Qin W, Wu L, Ning Z. Clinical and genetic analyses of premature mitochondrial encephalopathy with epilepsia partialis continua caused by novel biallelic NARS2 mutations. Front Neurosci 2022; 16:1076183. [PMID: 36620461 PMCID: PMC9811187 DOI: 10.3389/fnins.2022.1076183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Biallelic NARS2 mutations can cause various neurodegenerative diseases, leading to growth retardation, intractable epilepsy, and hearing loss in early infancy and further progressing to spastic paraplegia, neurodegeneration, and even death. NARS2 mutations are associated with mitochondrial dysfunction and cause combined oxidative phosphorylation deficiency 24 (COXPD24). Relatively few cases have been reported worldwide; therefore, the pathogenesis of COXPD24 is poorly understood. We studied two unrelated patients with COXPD24 with similar phenotypes who presented with intractable refractory epilepsia partialis continua, hearing loss, and growth retardation. One patient died from epilepsy. Three novel NARS2 variants (case 1: c.185T > C and c.251 + 2T > G; case 2: c.185T > C and c.509T > G) were detected with whole-exome sequencing. c.251 + 2T > G is located at the donor splicing site in the non-coding sequence of the gene. The minigene experiment further verified that c.251 + 2T > G caused variable splicing abnormalities and produced truncated proteins. Molecular dynamics studies showed that c.185T > C and c.509T > G reduced the binding free energy of the NARS2 protein dimer. The literature review revealed fewer than 30 NARS2 variants. These findings improved our understanding of the disease phenotype and the variation spectrum and revealed the potential pathogenic mechanism of non-coding sequence mutations in COXPD24.
Collapse
Affiliation(s)
- Wenjing Hu
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Hongjun Fang
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Yu Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
| | - Li Li
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Danni Guo
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Jingwen Tang
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Jurong Yi
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Qingqing Liu
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Wei Qin
- Department of Neurology, Hunan Children’s Hospital, Changsha, China
| | - Liwen Wu
- Department of Neurology, Hunan Children’s Hospital, Changsha, China,*Correspondence: Liwen Wu,
| | - Zeshu Ning
- Department of Neurology, Hunan Children’s Hospital, Changsha, China,Zeshu Ning,
| |
Collapse
|
10
|
Cokyaman T, Cetin H, Dogan D, Silan F. A new entity in the NARS2 variant: the first reported case of type 1 diabetes mellitus associated with the phenotype. J Trop Pediatr 2022; 69:6994010. [PMID: 36661119 DOI: 10.1093/tropej/fmac108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
NARS2 mutations are known to cause various clinical phenotypes such as nonsyndromic hearing loss, Leigh/Alpers syndrome, refractory epilepsy, developmental delay, intellectual disability and myopathy. We presented the first Turkish variant of NASR2 and added type 1 diabetes mellitus (DM), which was not previously described in the phenotype spectrum of this disease. A 4.5-month-old girl presented with hearing loss, hypotonia, refractory myoclonic epilepsy, severe developmental delay and large subdural hemorrhage. In the first year of the follow-up, type 1 DM developed. A homozygous missense mutation, [c.500 A>G, p.H167R] in the NARS2 gene was detected in the trio-based whole-exome sequencing (WES). In this disease, in addition to multi-organ involvement, type 1 DM may also develop, as in our case. Since it is a mitochondrial disease, the decision to treat with valproic acid should be reconsidered. The long diagnostic process can be shortened with WES.
Collapse
Affiliation(s)
- Turgay Cokyaman
- Division of Pediatric Neurology, Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale 17100, Turkey
| | - Huriye Cetin
- Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale 17100, Turkey
| | - Durmus Dogan
- Division of Pediatric Endocrinology, Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale 17100, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale 17100, Turkey
| |
Collapse
|
11
|
Ait-El-Mkadem Saadi S, Kaphan E, Morales Jaurrieta A, Fragaki K, Chaussenot A, Bannwarth S, Maues De Paula A, Paquis-Flucklinger V, Rouzier C. Splicing variants in NARS2 are associated with milder phenotypes and intra-familial variability. Eur J Med Genet 2022; 65:104643. [DOI: 10.1016/j.ejmg.2022.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/03/2022]
|
12
|
Novel NARS2 variant causing leigh syndrome with normal lactate levels. Hum Genome Var 2022; 9:12. [PMID: 35508527 PMCID: PMC9068749 DOI: 10.1038/s41439-022-00191-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 01/15/2023] Open
Abstract
Leigh syndrome is the most genetically heterogenous phenotype of mitochondrial disease. We describe a patient with Leigh syndrome whose diagnosis had not been confirmed because of normal metabolic screening results at the initial presentation. Whole-exome sequencing identified pathogenic variants in NARS2, the gene encoding a mitochondrial asparaginyl-tRNA synthetase. One of the biallelic variants was novel. This highlights the essential role of genetic testing for a definite diagnosis of Leigh syndrome.
Collapse
|
13
|
Zhang Y, Zhao X, Xu Y, Chen L, Li N, Yao R, Wang X, Wang J, Yu T. Study of novel NARS2 variants in patient of combined oxidative phosphorylation deficiency 24. Transl Pediatr 2022; 11:448-457. [PMID: 35558980 PMCID: PMC9085945 DOI: 10.21037/tp-21-570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/24/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND NARS2 catalyzes the attachment of asparagine amino acids to mitochondrial tRNAAsn and is critical for efficient mitochondrial protein synthesis. Biallelic variants in NARS2 are associated with combined oxidative phosphorylation deficiency 24 (COXPD24) and autosomal recessive deafness-94. METHODS Patient information was obtained after recruitment. Genetic tests were performed using whole exome sequencing (WES) and Sanger sequencing. Structure prediction was based on the RaptorX and SWISS-MODEL platforms. The mRNA analysis of paternal variant was performed. Expression levels and dimerization of wild-type (WT) and mutant NARS2 were detected in human embryonic kidney (HEK) 293T cells. Mitochondrial localization of NARS2 variants was determined using immunofluorescence staining. RESULTS The patient presented early onset generalized epilepsy, myoclonic seizures, severe bilateral hearing impairment and affected liver and heart. WES identified two compound heterozygous variants in NARS2: c.1141A>G/p.Asn381Asp and c.1290G>C/p.Trp430Cys. In silico analysis predicted that both variants would cause significant and pathogenic changes in secondary structure. NARS2 c.1290G>C is a variant at the first nucleotide of an exon, a location thought to affect mRNA splicing. Although transcriptional experiments did not identify aberrant splicing, we observed a lower proportion of transcripts from the NARS2 c.1290G>C variant. An in vitro experiment showed that both variants impaired NARS2 expression, while mitochondrial localization and dimerization remained unaffected. CONCLUSIONS The patient was diagnosed with COXPD24 caused by novel NARS2 variations. The cardiac dysfunction is identified for the first time. In vitro study revealed impairment of variants on NARS2 expression. These data enrich our knowledge regarding the phenotypic and genotypic spectra of NARS2.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyue Zhao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lina Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Finsterer J. Fatal status epilepticus: the broad phenotypic heterogeneity of NARS2 variants. Neurogenetics 2021; 23:73-74. [PMID: 34779985 DOI: 10.1007/s10048-021-00676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Affiliation(s)
- J Finsterer
- Klinik Landstrasse, Messerli Institute, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|