1
|
Zhong Q, Kowluru RA. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Diabetes 2013; 62:2559-68. [PMID: 23423566 PMCID: PMC3712057 DOI: 10.2337/db12-1141] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes activates retinal matrix metalloproteinase-9 (MMP-9), and MMP-9 damages the mitochondria and augments capillary cell apoptosis. Our aim is to elucidate the mechanism responsible for MMP-9 activation. Histone modifications and recruitment of the nuclear transcriptional factor-κB (p65 subunit) at the MMP-9 promoter and the activity of lysine-specific demethylase 1 (LSD1) were measured in the retina from streptozotocin-induced diabetic rats. The role of LSD1 in MMP-9 activation was investigated in isolated retinal endothelial cells transfected with LSD1 small interfering RNA (siRNA). The results were confirmed in the retina from human donors with diabetic retinopathy. Diabetes decreased histone H3 dimethyl lysine 9 (H3K9me2) and increased acetyl H3K9 (Ac-H3K9) and p65 at the retinal MMP-9 promoter. LSD1 enzyme activity and its transcripts were elevated. LSD1 siRNA ameliorated the glucose-induced decrease in H3K9me2 and increase in p65 at the MMP-9 promoter, and prevented MMP-9 activation, mitochondrial damage, and cell apoptosis. Human donors with diabetic retinopathy had similar epigenetic changes at the MMP-9 promoter. Thus, activated LSD1 hypomethylates H3K9 at the MMP-9 promoter and this frees up that lysine 9 for acetylation. Increased Ac-H3K9 facilitates the recruitment of p65, resulting in MMP-9 activation and mitochondrial damage. Thus, the regulation of LSD1 by molecular or pharmacological means has the potential to retard the development of diabetic retinopathy.
Collapse
|
2
|
Trujillo KM, Osley MA. A role for H2B ubiquitylation in DNA replication. Mol Cell 2012; 48:734-46. [PMID: 23103252 PMCID: PMC3525772 DOI: 10.1016/j.molcel.2012.09.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 06/12/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Abstract
The monoubiquitylation of histone H2B plays an important role in gene expression by contributing to the regulation of transcription elongation and mRNA processing and export. We explored additional cellular functions of this histone modification by investigating its localization to intergenic regions. H2B ubiquitylation is present in chromatin around origins of DNA replication in budding yeast, and as DNA is replicated its levels are maintained on daughter strands by the Bre1 ubiquitin ligase. In the absence of H2B ubiquitylation, the prereplication complex is formed and activated, but replication fork progression is slowed down and the replisome becomes unstable in the presence of hydroxyurea. H2B ubiquitylation promotes the assembly or stability of nucleosomes on newly replicated DNA, and this function is postulated to contribute to fork progression and replisome stability.
Collapse
Affiliation(s)
- Kelly M Trujillo
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | |
Collapse
|
3
|
Tian Z, Tolić N, Zhao R, Moore RJ, Hengel SM, Robinson EW, Stenoien DL, Wu S, Smith RD, Paša-Tolić L. Enhanced top-down characterization of histone post-translational modifications. Genome Biol 2012; 13:R86. [PMID: 23034525 PMCID: PMC3491414 DOI: 10.1186/gb-2012-13-10-r86] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 10/03/2012] [Indexed: 02/08/2023] Open
Abstract
Post-translational modifications (PTMs) of core histones work synergistically to fine tune chromatin structure and function, generating a so-called histone code that can be interpreted by a variety of chromatin interacting proteins. We report a novel online two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) platform for high-throughput and sensitive characterization of histone PTMs at the intact protein level. The platform enables unambiguous identification of 708 histone isoforms from a single 2D LC-MS/MS analysis of 7.5 µg purified core histones. The throughput and sensitivity of comprehensive histone modification characterization is dramatically improved compared with more traditional platforms.
Collapse
|
4
|
Histone H3 lysine 4 methylation marks postreplicative human cytomegalovirus chromatin. J Virol 2012; 86:9817-27. [PMID: 22761369 DOI: 10.1128/jvi.00581-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the nuclei of permissive cells, human cytomegalovirus genomes form nucleosomal structures initially resembling heterochromatin but gradually switching to a euchromatin-like state. This switch is characterized by a decrease in histone H3 K9 methylation and a marked increase in H3 tail acetylation and H3 K4 methylation across the viral genome. We used ganciclovir and a mutant virus encoding a reversibly destabilized DNA polymerase to examine the impact of DNA replication on histone modification dynamics at the viral chromatin. The changes in H3 tail acetylation and H3 K9 methylation proceeded in a DNA replication-independent fashion. In contrast, the increase in H3 K4 methylation proved to depend widely on viral DNA synthesis. Consistently, labeling of nascent DNA using "click chemistry" revealed preferential incorporation of methylated H3 K4 into viral (but not cellular) chromatin during or following DNA replication. This study demonstrates largely selective epigenetic tagging of postreplicative human cytomegalovirus chromatin.
Collapse
|
5
|
Li Q, Sarna SK. Nitric oxide modifies chromatin to suppress ICAM-1 expression during colonic inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303:G103-10. [PMID: 22517771 PMCID: PMC3404578 DOI: 10.1152/ajpgi.00381.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) is an established inflammatory mediator. However, it remains controversial whether NO enhances the inflammatory response in the colon or suppresses it. We investigated the epigenetic regulation of Icam-1 expression by NO following induction of colonic inflammation in rats by 2,4,6-trinitrobenzene sulfonic (TNBS) acid and obtaining colonic muscularis externae tissues 24 h later. TNBS inflammation induced intercellular adhesion molecule-1 (ICAM-1) expression by translocating NF-κB to the nucleus. The incubation of inflamed tissues with S-nitrosoglutathione (GSNO) did not affect the nuclear translocation of NF-κB; however, it suppressed the NF-κB binding to DNA. Chromatin immunoprecipitation analysis (ChIP)-qPCR assays showed that the increase in NF-κB/DNA interaction following inflammation is due to the transcriptional downregulation of global HDAC3 and a decrease in its interaction with the DNA on the Icam-1 promoter containing the binding motifs of NF-κB. The decrease in the association of histone deacetylase (HDAC) 3 with the Icam-1 promoter increased the acetylation of histone 4 lysine residue 12 (H4K12), which would favor chromatin relaxation and greater access of NF-κB to its DNA binding sites. HDAC3 dissociation from the DNA did not affect the acetylation levels of H4K8 and H4K16. The NO release by GSNO countered the upregulation of Icam-1 by increasing the transcription of global HDAC3 and its association with the Icam-1 promoter, and by suppressing H4K12 acetylation. We conclude that chromatin modification by transcriptional downregulation of HDAC3 plays a critical role in the induction of the inflammatory response. NO may serve as an anti-inflammatory mediator during the acute stage of inflammation by blunting the downregulation of global HDAC3, increasing HDAC3 interaction with the nucleosomes containing the binding moieties of NF-κB, reducing H4K12Ac to restrict the access of NF-κB to DNA, and suppressing ICAM-1 expression.
Collapse
Affiliation(s)
- Qingjie Li
- 1Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and
| | - Sushil K. Sarna
- 1Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and ,2Department of Neuroscience and Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
6
|
Regulation of inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) by reversible lysine acetylation. Proc Natl Acad Sci U S A 2012; 109:2290-5. [PMID: 22308441 DOI: 10.1073/pnas.1119740109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) catalyzes the rate-limiting step in the formation of higher phosphorylated forms of inositol in mammalian cells. Because it sits at a key regulatory point in the inositol metabolic pathway, its activity is likely to be regulated. We have previously shown that ITPK1 is phosphorylated, a posttranslational modification used by cells to regulate enzyme activity. We show here that ITPK1 is modified by acetylation of internal lysine residues. The acetylation sites, as determined by mass spectrometry, were found to be lysines 340, 383, and 410, which are all located on the surface of this protein. Overexpression of the acetyltransferases CREB-binding protein or p300 resulted in the acetylation of ITPK1, whereas overexpression of mammalian silent information regulator 2 resulted in the deacetylation of ITPK1. Functionally, ITPK1 acetylation regulates its stability. CREB-binding protein dramatically decreased the half-life of ITPK1. We further found that ITPK1 acetylation down-regulated its enzyme activity. HEK293 cells stably expressing acetylated ITPK1 had reduced levels of the higher phosphorylated forms of inositol, compared with the levels seen in cells expressing unacetylated ITPK1. These results demonstrate that lysine acetylation alters both the stability as well as the activity of ITPK1 in cells.
Collapse
|
7
|
Schulz D, Vassen L, Chow KT, McWhirter SM, Amin RH, Möröy T, Schlissel MS. Gfi1b negatively regulates Rag expression directly and via the repression of FoxO1. ACTA ACUST UNITED AC 2011; 209:187-99. [PMID: 22201127 PMCID: PMC3260878 DOI: 10.1084/jem.20110645] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gfi1b negatively regulates Rag expression through direct binding to the Rag locus and through inhibition of Foxo1; mice lacking both Gfi1b and Gfi1 exhibit a block in B cell development. Precise regulation of Rag (recombination-activating gene) expression is crucial to prevent genomic instability caused by the generation of Rag-mediated DNA breaks. Although mechanisms of Rag activation have been well characterized, the mechanism by which Rag expression is down-regulated in early B cell development has not been fully elucidated. Using a complementary DNA library screen, we identified the transcriptional repressor Gfi1b as negative regulator of the Rag locus. Expression of Gfi1b causes repression of Rag1 and Rag2 in cell lines and primary mouse cells. Conversely, Gfi1b-deficient cell lines exhibit increased Rag expression, double-strand breaks and recombination, and cell cycle defects. In primary cells, transcription of Gfi1b inversely correlates with Rag transcription, and simultaneous inactivation of Gfi1 and Gfi1b leads to an increase in Rag transcription early in B cell development. In addition, deletion of Gfi1 and Gfi1b in vivo results in a severe block in B cell development. Gfi1b orchestrates Rag repression via a dual mechanism. Direct binding of Gfi1b to a site 5′ of the B cell–specific Erag enhancer results in epigenetic changes in the Rag locus, whereas indirect inhibition is achieved through repression of the trans-activator Foxo1. Together, our experiments show that Gfi family members are essential for normal B cell development and play an important role in modulating expression of the V(D)J recombinase.
Collapse
Affiliation(s)
- Danae Schulz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Xiong L, Darwanto A, Sharma S, Herring J, Hu S, Filippova M, Filippov V, Wang Y, Chen CS, Duerksen-Hughes PJ, Sowers LC, Zhang K. Mass spectrometric studies on epigenetic interaction networks in cell differentiation. J Biol Chem 2011; 286:13657-68. [PMID: 21335548 DOI: 10.1074/jbc.m110.204800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arrest of cell differentiation is one of the leading causes of leukemia and other cancers. Induction of cell differentiation using pharmaceutical agents has been clinically attempted for the treatment of these cancers. Epigenetic regulation may be one of the underlying molecular mechanisms controlling cell proliferation or differentiation. Here, we report on the use of proteomics-based differential protein expression analysis in conjunction with quantification of histone modifications to decipher the interconnections among epigenetic modifications, their modifying enzymes or mediators, and changes in the associated pathways/networks that occur during cell differentiation. During phorbol-12-myristate 13-acetate-induced differentiation of U937 cells, fatty acid synthesis and its metabolic processing, the clathrin-coated pit endocytosis pathway, and the ubiquitin/26 S proteasome degradation pathways were up-regulated. In addition, global histone H3/H4 acetylation and H2B ubiquitination were down-regulated concomitantly with impaired chromatin remodeling machinery, RNA polymerase II complexes, and DNA replication. Differential protein expression analysis established the networks linking histone hypoacetylation to the down-regulated expression/activity of p300 and linking histone H2B ubiquitination to the RNA polymerase II-associated FACT-RTF1-PAF1 complex. Collectively, our approach has provided an unprecedentedly systemic set of insights into the role of epigenetic regulation in leukemia cell differentiation.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bronze-da-Rocha E, Lin CM, Shimura T, Aladjem MI. Interactions of MCP1 with components of the replication machinery in mammalian cells. Int J Biol Sci 2011; 7:193-208. [PMID: 21383955 PMCID: PMC3048848 DOI: 10.7150/ijbs.7.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/12/2011] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication starts with the assembly of a pre-replication complex (pre-RC) at replication origins. We have previously demonstrated that Metaphase Chromosome Protein 1 (MCP1) is involved in the early events of DNA replication. Here we show that MCP1 associates with proteins that are required for the establishment of the pre-replication complex. Reciprocal immunoprecipitation analysis showed that MCP1 interacted with Cdc6, ORC2, ORC4, MCM2, MCM3 and MCM7, with Cdc45 and PCNA. Immunofluorescence studies demonstrated the co-localization of MCP1 with some of those proteins. Moreover, biochemical studies utilizing chromatin-immunoprecipitation (ChIP) revealed that MCP1 preferentially binds replication initiation sites in human cells. Interestingly, although members of the pre-RC are known to interact with some hallmarks of heterochromatin, our co-immunoprecipitation and immunofluorescence analyses showed that MCP1 did not interact and did not co-localize with heterochromatic proteins including HP1β and MetH3K9. These observations suggest that MCP1 is associated with replication factors required for the initiation of DNA replication and binds to the initiation sites in loci that replicate early in S-phase. In addition, immunological assays revealed the association of MCP1 forms with histone H1 variants and mass spectrometry analysis confirmed that MCP1 peptides share common sequences with H1.2 and H1.5 subtypes.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, Portugal.
| | | | | | | |
Collapse
|
10
|
Lee TJ, Pascuzzi PE, Settlage SB, Shultz RW, Tanurdzic M, Rabinowicz PD, Menges M, Zheng P, Main D, Murray JAH, Sosinski B, Allen GC, Martienssen RA, Hanley-Bowdoin L, Vaughn MW, Thompson WF. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state. PLoS Genet 2010; 6:e1000982. [PMID: 20548960 PMCID: PMC2883604 DOI: 10.1371/journal.pgen.1000982] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/12/2010] [Indexed: 12/23/2022] Open
Abstract
DNA replication programs have been studied extensively in yeast and animal systems, where they have been shown to correlate with gene expression and certain epigenetic modifications. Despite the conservation of core DNA replication proteins, little is known about replication programs in plants. We used flow cytometry and tiling microarrays to profile DNA replication of Arabidopsis thaliana chromosome 4 (chr4) during early, mid, and late S phase. Replication profiles for early and mid S phase were similar and encompassed the majority of the euchromatin. Late S phase exhibited a distinctly different profile that includes the remaining euchromatin and essentially all of the heterochromatin. Termination zones were consistent between experiments, allowing us to define 163 putative replicons on chr4 that clustered into larger domains of predominately early or late replication. Early-replicating sequences, especially the initiation zones of early replicons, displayed a pattern of epigenetic modifications specifying an open chromatin conformation. Late replicons, and the termination zones of early replicons, showed an opposite pattern. Histone H3 acetylated on lysine 56 (H3K56ac) was enriched in early replicons, as well as the initiation zones of both early and late replicons. H3K56ac was also associated with expressed genes, but this effect was local whereas replication time correlated with H3K56ac over broad regions. The similarity of the replication profiles for early and mid S phase cells indicates that replication origin activation in euchromatin is stochastic. Replicon organization in Arabidopsis is strongly influenced by epigenetic modifications to histones and DNA. The domain organization of Arabidopsis is more similar to that in Drosophila than that in mammals, which may reflect genome size and complexity. The distinct patterns of association of H3K56ac with gene expression and early replication provide evidence that H3K56ac may be associated with initiation zones and replication origins. During growth and development, all plants and animals must replicate their DNA. This process is regulated to ensure that all sequences are completely and accurately replicated and is limited to S phase of the cell cycle. In the cell, DNA is packaged with histone proteins into chromatin, and both DNA and histones are subject to epigenetic modifications that affect chromatin state. Euchromatin and heterochromatin are chromatin states marked by epigenetic modifications specifying open and closed conformations, respectively. Using the model plant Arabidopsis thaliana, we show that the time at which a DNA sequence replicates is influenced by the epigenetic modifications to the surrounding chromatin. DNA replication occurs in two phases, with euchromatin replicating in early and mid S phase and heterochromatin replicating late. DNA replication time has been linked to gene expression in other organisms, and this is also true in Arabidopsis because more genes are active in euchromatin when compared to heterochromatin. The earliest replicating DNA sequences are associated with acetylation of histone H3 on lysine 56 (H3K56ac). H3K56ac is also abundant in active genes, but the patterns of association of H3K56ac with gene expression and DNA replication are distinct, suggesting that H3K56ac is independently linked to both processes.
Collapse
Affiliation(s)
- Tae-Jin Lee
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Pete E. Pascuzzi
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sharon B. Settlage
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Randall W. Shultz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Milos Tanurdzic
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Pablo D. Rabinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Margit Menges
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ping Zheng
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, United States of America
| | - Dorrie Main
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, Washington, United States of America
| | - James A. H. Murray
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Bryon Sosinski
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - George C. Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Linda Hanley-Bowdoin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Matthew W. Vaughn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - William F. Thompson
- Departments of Plant Biology, Genetics, and Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Traven A, Lo TL, Lithgow T, Heierhorst J. The yeast PUF protein Puf5 has Pop2-independent roles in response to DNA replication stress. PLoS One 2010; 5:e10651. [PMID: 20498834 PMCID: PMC2871046 DOI: 10.1371/journal.pone.0010651] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 04/16/2010] [Indexed: 11/19/2022] Open
Abstract
PUFs are RNA binding proteins that promote mRNA deadenylation and decay and inhibit translation. Yeast Puf5 is the prototype for studying PUF-dependent gene repression. Puf5 binds to the Pop2 subunit of the Ccr4-Pop2-NOT mRNA deadenylase, recruiting the deadenylase and associated translational repressors to mRNAs. Here we used yeast genetics to show that Puf5 has additional roles in vivo that do not require Pop2. Deletion of PUF5 caused increased sensitivity to DNA replication stress in cells lacking Pop2, as well as in cells mutated for two activities recruited to mRNAs by the Puf5-Pop2 interaction, the deadenylase Ccr4 and the translational repressor Dhh1. A functional Puf5 RNA binding domain was required, and Puf5 cytoplasmic localisation was sufficient for resistance to replication stress, indicating posttranscriptional gene expression control is involved. In contrast to DNA replication stress, in response to the cell wall integrity pathway activator caffeine, PUF5 and POP2 acted in the same genetic pathway, indicating that functions of Puf5 in the caffeine response are mediated by Pop2-dependent gene repression. Our results support a model in which Puf5 uses multiple, Pop2-dependent and Pop2-independent mechanisms to control mRNA expression. The Pop2-independent roles for Puf5 could involve spatial control of gene expression, a proposition supported by our data indicating that the active form of Puf5 is localised to cytoplasmic foci.
Collapse
Affiliation(s)
- Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|