1
|
Gu Y, Jiang J, Liang C. TFAP4 promotes the growth of prostate cancer cells by upregulating FOXK1. Exp Ther Med 2021; 22:1299. [PMID: 34630654 PMCID: PMC8461620 DOI: 10.3892/etm.2021.10734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/22/2021] [Indexed: 11/06/2022] Open
Abstract
Transcription factor activating enhancer binding protein 4 (TFAP4) has been indicated to be correlated with the progression of various human malignancies. However, the effect and regulatory mechanism of TFAP4 in prostate cancer (PC) remain unclear. The protein and mRNA expression were detected by western blotting and RT-qPCR. TFAP4 was overexpressed or knocked down in PC cells. The viability, invasion and migration of PC cells were analyzed by CCK-8, Transwell and wound healing assays. The colony formation was also determined. TFAP4 expression was upregulated in PC patients and cells; high TFAP4 expression predicted poor prognosis, and was associated with a range of clinicopathological features, including metastasis, clinical stage and Gleason score. Moreover, overexpression of TFAP4 promoted cell viability, migration, and invasion in vitro, whereas knockdown of TFAP4 revealed the opposite results. TFAP4 also positively regulated forkhead box K1 (FOXK1) expression. In addition, overexpression of FOXK1 reversed the effects of TFAP4 knockdown on PC cells. These findings clarified the biologic significance of TFAP4 in PC progression and revealed an association between TFAP4 and FOXK1, thus providing a new potential target for clinical therapy of PC.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Urology, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230041, P.R. China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230041, P.R. China
| | - Jiujin Jiang
- Department of Urology, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui 230041, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230041, P.R. China
| |
Collapse
|
2
|
Haeussler S, Yeroslaviz A, Rolland SG, Luehr S, Lambie EJ, Conradt B. Genome-wide RNAi screen for regulators of UPRmt in Caenorhabditis elegans mutants with defects in mitochondrial fusion. G3-GENES GENOMES GENETICS 2021; 11:6204483. [PMID: 33784383 PMCID: PMC8495942 DOI: 10.1093/g3journal/jkab095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Mitochondrial dynamics plays an important role in mitochondrial quality control and the adaptation of metabolic activity in response to environmental changes. The disruption of mitochondrial dynamics has detrimental consequences for mitochondrial and cellular homeostasis and leads to the activation of the mitochondrial unfolded protein response (UPRmt), a quality control mechanism that adjusts cellular metabolism and restores homeostasis. To identify genes involved in the induction of UPRmt in response to a block in mitochondrial fusion, we performed a genome-wide RNAi screen in Caenorhabditis elegans mutants lacking the gene fzo-1, which encodes the ortholog of mammalian Mitofusin, and identified 299 suppressors and 86 enhancers. Approximately 90% of these 385 genes are conserved in humans, and one third of the conserved genes have been implicated in human disease. Furthermore, many have roles in developmental processes, which suggests that mitochondrial function and the response to stress are defined during development and maintained throughout life. Our dataset primarily contains mitochondrial enhancers and non-mitochondrial suppressors of UPRmt, indicating that the maintenance of mitochondrial homeostasis has evolved as a critical cellular function, which, when disrupted, can be compensated for by many different cellular processes. Analysis of the subsets 'non-mitochondrial enhancers' and 'mitochondrial suppressors' suggests that organellar contact sites, especially between the ER and mitochondria, are of importance for mitochondrial homeostasis. In addition, we identified several genes involved in IP3 signaling that modulate UPRmt in fzo-1 mutants and found a potential link between pre-mRNA splicing and UPRmt activation.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Planegg-Martinsried, Germany
| | - Stéphane G Rolland
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - Sebastian Luehr
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Eric J Lambie
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6AP, United Kingdom
| |
Collapse
|
3
|
Cha N, Jia B, He Y, Luan W, Bao W, Han X, Gao W, Gao Y. MicroRNA-124 suppresses the invasion and proliferation of breast cancer cells by targeting TFAP4. Oncol Lett 2021; 21:271. [PMID: 33717268 PMCID: PMC7885155 DOI: 10.3892/ol.2021.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/12/2021] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA/miR)-124 is widely accepted as the suppressor of different tumors. The present study aimed to improve understanding of the potential role of miR-124 in breast cancer. The gene expression profile change derived from the overexpression of miR-124 was investigated using RNA sequencing and bioinformatics analysis of the breast cancer cell line SKBR3. The results demonstrated that the gene expression profile of SKBR3 cells significantly changed. In addition, the transcription factor activating enhancer-binding protein 4 (TFAP4) gene was identified among the top 10 differentially expressed genes, and was identified as a novel target gene of miR-124 using a dual-luciferase reporter assay. TFAP4 knockdown in notably impaired SKBR3 cell migration and proliferation, which was consistent with decreasing migration and proliferation ability following overexpression of miR-124. Taken together, these results suggest that overexpression of miR-124 can suppress the migration and proliferation of SKBR3 cells by tarsgeting TFAP4. Thus, TFAP4 may act as a novel therapeutic target of breast cancer.
Collapse
Affiliation(s)
- Nier Cha
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Baoqing Jia
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Yinzai He
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Wei Luan
- Department of Medical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Wenhua Bao
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Xiuhua Han
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Weishi Gao
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| | - Yanwei Gao
- Department of Surgical Oncology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, P.R. China
| |
Collapse
|
4
|
Littlejohn NK, Seban N, Liu CC, Srinivasan S. A feedback loop governs the relationship between lipid metabolism and longevity. eLife 2020; 9:58815. [PMID: 33078707 PMCID: PMC7575325 DOI: 10.7554/elife.58815] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
The relationship between lipid metabolism and longevity remains unclear. Although fat oxidation is essential for weight loss, whether it remains beneficial when sustained for long periods, and the extent to which it may attenuate or augment lifespan remain important unanswered questions. Here, we develop an experimental handle in the Caenorhabditis elegans model system, in which we uncover the mechanisms that connect long-term fat oxidation with longevity. We find that sustained β-oxidation via activation of the conserved triglyceride lipase ATGL-1, triggers a feedback transcriptional loop that involves the mito-nuclear transcription factor ATFS-1, and a previously unknown and highly conserved repressor of ATGL-1 called HLH-11/AP4. This feedback loop orchestrates the dual control of fat oxidation and lifespan, and shields the organism from life-shortening mitochondrial stress in the face of continuous fat oxidation. Thus, we uncover one mechanism by which fat oxidation can be sustained for long periods without deleterious effects on longevity.
Collapse
Affiliation(s)
- Nicole K Littlejohn
- Department of Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Nicolas Seban
- Department of Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| | - Chung-Chih Liu
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, United States
| | - Supriya Srinivasan
- Department of Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
5
|
Ma W, Liu B, Li J, Jiang J, Zhou R, Huang L, Li X, He X, Zhou Q. MicroRNA-302c represses epithelial-mesenchymal transition and metastasis by targeting transcription factor AP-4 in colorectal cancer. Biomed Pharmacother 2018; 105:670-676. [PMID: 29906744 DOI: 10.1016/j.biopha.2018.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) contribute to tumorigenesis and progression via acting as tumor suppressors or oncogenes in human cancer. Aberrant expression of miR-302c has been reported in various types of cancer except colorectal cancer (CRC). Thus, our study was aimed to verify the expression of miR-302c and its functional role in CRC. We found a significant reduced expression of miR-302c in CRC tissues compared to tumor-adjacent tissues. Low miR-302c level was remarkably correlated with deeper tumor invasion, lymph node metastasis and advanced TNM stage. Importantly, low miR-302c expression was identified as an independent indicator for poor prognosis of CRC patients. Overexpression of miR-302c repressed migration and invasion capacities of SW620 and SW480 cells in vitro. Mechanistically, miR-302c inversely regulated transcription factor AP4 (TFAP4) abundance in both SW620 and SW480 cells, and it negatively correlated with TFAP4 mRNA expression in CRC samples. Herein, TFAP4, a regulator of epithelial-mesenchymal transition (EMT), was recognized as a direct target gene of miR-302c in CRC. Otherwise, miR-302c overexpression increased E-cadherin expression and reduced the levels of Vimentin and SNAI1, suggesting an inhibitory effect of miR-302c on EMT of CRC cells. Notably, our findings established that the EMT and metastasis of Caco-2 cells were enhanced by miR-302c knockdown, and subsequently reversed by TFAP4 silencing. Collectively, these data indicate that miR-302c represses EMT and CRC metastasis possibly by targeting TFAP4, and it may serve as a potential prognostic factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Wenqi Ma
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Bailing Liu
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, Shaanxi Province, 710003, China
| | - Jie Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Ru Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Lili Huang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Xiaopeng Li
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China.
| |
Collapse
|
6
|
Seafood allergy: A comprehensive review of fish and shellfish allergens. Mol Immunol 2018; 100:28-57. [PMID: 29858102 DOI: 10.1016/j.molimm.2018.04.008] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
Abstract
Seafood refers to several distinct groups of edible aquatic animals including fish, crustacean, and mollusc. The two invertebrate groups of crustacean and mollusc are, for culinary reasons, often combined as shellfish but belong to two very different phyla. The evolutionary and taxonomic diversity of the various consumed seafood species poses a challenge in the identification and characterisation of the major and minor allergens critical for reliable diagnostics and therapeutic treatments. Many allergenic proteins are very different between these groups; however, some pan-allergens, including parvalbumin, tropomyosin and arginine kinase, seem to induce immunological and clinical cross-reactivity. This extensive review details the advances in the bio-molecular characterisation of 20 allergenic proteins within the three distinct seafood groups; fish, crustacean and molluscs. Furthermore, the structural and biochemical properties of the major allergens are described to highlight the immunological and subsequent clinical cross-reactivities. A comprehensive list of purified and recombinant allergens is provided, and the applications of component-resolved diagnostics and current therapeutic developments are discussed.
Collapse
|
7
|
Wei J, Yang P, Zhang T, Chen Z, Chen W, Wanglin L, He F, Wei F, Huang D, Zhong J, Yang Z, Chen H, Hu H, Zeng S, Sun Z, Cao J. Overexpression of transcription factor activating enhancer binding protein 4 (TFAP4) predicts poor prognosis for colorectal cancer patients. Exp Ther Med 2017; 14:3057-3061. [PMID: 28912857 PMCID: PMC5585722 DOI: 10.3892/etm.2017.4875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/15/2017] [Indexed: 12/28/2022] Open
Abstract
Transcription factor activating enhancer binding protein 4 (TFAP4) is an important regulator in the genesis and progression of human cancers. Overexpression of TFAP4 has been found to be correlated with several malignancies. The present study assessed the clinical importance of TFAP4 in colorectal cancer (CRC). First, immunohistochemistry was used to analyze TFAP4 expression and the association of TFAP4 expression with clinicopathological features on a tissue microarray containing 208 CRC patients. The results revealed that TFAP4 protein expression was significantly upregulated in CRC tissues compared with that in normal colon tissues (P<0.001). Of note, statistical analysis revealed that TFAP4 expression was significantly correlated with a high pathological grade (P=0.034), advanced clinical stage (P=0.024), enhanced tumor invasion (P=0.002) and lymph node metastasis (P=0.041). In addition, the Cancer Genome Atlas dataset further validated that TFAP4 mRNA levels were increased in CRC with advanced clinical stage (P=0.026), lymph node metastasis (P=0.018) and vascular invasion (P=0.046). Kaplan-Meier survival analysis demonstrated that CRC patients with high TFAP4 expression had shorter overall survival compared with those with low TFAP4 expression (P=0.011). Importantly, overexpression of TFAP4 was a valuable independent prognostic factor for CRC patients (hazard ratio, 8.200; 95% confidence interval, 1.838-36.591; P=0.006). In summary, TFAP4 may have an important role in CRC progression and upregulation of TFAP4 may be a predictor of poor prognosis for CRC patients.
Collapse
Affiliation(s)
- Jianchang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zhuanpeng Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Wei Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510180, P.R. China
| | - Li Wanglin
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Feng He
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Fang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Di Huang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Junbin Zhong
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zhi Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Huacui Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - He Hu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Shanqi Zeng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Zheng Sun
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
8
|
Hu X, Guo W, Chen S, Xu Y, Li P, Wang H, Chu H, Li J, DU Y, Chen X, Zhang G, Zhao G. Silencing of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human lung cancer cells. Oncol Lett 2016; 11:3735-3742. [PMID: 27313685 DOI: 10.3892/ol.2016.4451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 03/15/2016] [Indexed: 12/25/2022] Open
Abstract
Activating enhancer-binding protein (AP)-4 is a member of the basic helix-loop-helix transcription factors, and is involved in tumor biology. However, the role of AP-4 in human lung cancer remains to be fully elucidated. In the present study, the expression of AP-4 in human lung cancer tissues and cells was investigated by reverse transcription-quantitative polymerase chain reaction, and it was observed that the level of AP-4 was increased in tumor tissues and cells compared with their normal counterparts. AP-4 expression was knocked down by transfection with a specific small interfering RNA (siRNA) in lung cancer cells, and this indicated that siRNA-mediated silencing of AP-4 inhibited cell proliferation, arrested the cell cycle at the G0/G1 phase and induced apoptosis by modulating the expression of p21 and cyclin D1. The results of the present study suggest that AP-4 may be an oncoprotein that has a significant role in lung cancer, and that siRNA-mediated silencing of AP-4 may have therapeutic potential as a strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xuanyu Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wei Guo
- Department of Microbiology and Immunology, Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shanshan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yizhuo Xu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Ping Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Heying Chu
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yuwen DU
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaonan Chen
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guoqiang Zhao
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
9
|
GONG HAI, HAN SHAORONG, YAO HUI, ZHAO HUI, WANG YANMING. AP-4 predicts poor prognosis in non-small cell lung cancer. Mol Med Rep 2014; 10:336-40. [DOI: 10.3892/mmr.2014.2209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/04/2014] [Indexed: 11/05/2022] Open
|
10
|
Lee JI, Mukherjee S, Yoon K, Dwivedi M, Bandyopadhyay J. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and aging. J Biosci 2013; 38:417-31. [DOI: 10.1007/s12038-013-9319-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
High expression of AP-4 predicts poor prognosis for hepatocellular carcinoma after curative hepatectomy. Tumour Biol 2012; 34:271-6. [PMID: 23055200 DOI: 10.1007/s13277-012-0547-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate the association between activating enhancer binding protein 4 (AP-4) tissue expression and patient prognosis in hepatocellular carcinoma (HCC). The levels of AP-4 mRNA and protein in tumor and para-tumor tissue were evaluated in 30 HCC cases by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Additionally, AP-4 protein expression in 112 HCC was analyzed by immunohistochemistry. The correlation of AP-4 expression and patients' clinicopathological parameters was evaluated. Survival analysis was performed using the Kaplan-Meier method and Cox's proportional hazards model. By RT-PCR and Western blot, the levels of AP-4 mRNA and protein were significantly higher in HCC, compared to that in para-tumor tissue (p < 0.001). Immunohistochemical staining revealed that AP-4 was highly expressed in 53.6 % of the HCC patients. The AP-4 expression level was closely associated with serum alpha fetoprotein elevation, tumor size, histological differentiation, tumor recurrence, tumor metastasis, and tumor stage. Kaplan-Meier survival analysis showed that a high expression level of AP-4 resulted in a significantly poor prognosis of HCC patients. Multivariate analysis revealed that AP-4 expression level was an independent prognostic parameter for the overall survival rate of HCC patients. These findings provide evidence that a high expression level of AP-4 serves as a biomarker for poor prognosis for HCC. Thus, we speculate that AP-4 may be a potential target of antiangiogenic therapy for HCC.
Collapse
|
12
|
Down-regulation of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human gastric cancer cells. PLoS One 2012; 7:e37096. [PMID: 22615908 PMCID: PMC3353913 DOI: 10.1371/journal.pone.0037096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 04/18/2012] [Indexed: 01/23/2023] Open
Abstract
Background AP-4 belongs to the basic helix-loop-helix leucine-zipper subgroup; it controls target gene expression, regulates growth, development and cell apoptosis and has been implicated in tumorigenesis. Our previous studies indicated that AP-4 was frequently overexpressed in gastric cancers and may be associated with the poor prognosis. The purpose of this study is to examine whether silencing of AP-4 can alter biological characteristics of gastric cancer cells. Methods Two specific siRNAs targeting AP-4 were designed, synthesized, and transfected into gastric cancer cell lines and human normal mucosa cells. AP-4 expression was measured with real-time quantitative PCR and Western blot. Cell proliferation and chemo-sensitivity were detected by CCK-8 assay. Cell cycle assay and apoptosis assay were performed by flow cytometer, and relative expression of cell cycle regulators were detected by real-time quantitative PCR and Western blot, expression of the factors involved in the apoptosis pathway were examined in mRNA and protein level. Results The expression of AP-4 was silenced by the siRNAs transfection and the effects of AP-4 knockdown lasted 24 to 96 hrs. The siRNA-mediated silencing of AP-4 suppressed the cellular proliferation, induced apoptosis and sensitized cancer cells to anticancer drugs. In addition, the expression level of p21, p53 and Caspase-9 were increased when AP-4 was knockdown, but the expression of cyclin D1, Bcl-2 and Bcl-xL was inhibited. It didn't induce cell cycle arrest when AP-4 was knockdown in p53 defect gastric cancer cell line Kato-III. Conclusions These results illustrated that gene silencing of AP-4 can efficiently inhibited cell proliferation, triggered apoptosis and sensitized cancer cells to anticancer drugs in vitro, suggesting that AP-4 siRNAs mediated silencing has a potential value in the treatment of human gastric cancer.
Collapse
|
13
|
The overexpression of AP-4 as a prognostic indicator for gastric carcinoma. Med Oncol 2011; 29:871-7. [PMID: 21336989 DOI: 10.1007/s12032-011-9845-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
As a transcription factor belonging to the basic helix-loop-helix leucine-zipper subgroup, AP-4 can control target gene expression by altering cell signal transduction, and regulate growth, development, and cell apoptosis. Under pathological circumstances, it is involved in tumorigenesis. Herein, immunohistochemistry and real-time PCR were used to detect the transcription factor AP-4 expression in gastric cancer, and these data were examined for correlation with histology, pTNM stage, and prognosis. The AP-4 expression rate was 83.67% in a total of 98 gastric cancer tissues, which was significantly higher than 40.91% in non-neoplastic tissues; AP-4 mRNA relative expression shows a significant difference between gastric cancer and normal tissues, and AP-4 expression has a significantly positive correlation with the depth of tumor invasion (P < 0.0001), degree of tumor differentiation (P = 0.0058), lymph node metastasis (P = 0.0255), and pTNM stage (P = 0.001). Survival analysis showed that AP-4-positive patients' median survival time (12.60 months) was significantly shorter than that (41.40 months) of AP-4-negative patients. AP-4 expression in gastric cancer is associated with clinicopathological parameters of gastric cancer, such as differentiation, lymph node metastasis, depth of invasion (P = 0.0010), and pTNM stage. What's more, AP-4 overexpression indicated a worse prognosis for patients. So AP-4 may be a molecular marker to predict the progression and prognosis of the tumor.
Collapse
|