1
|
Wang B, Zhou R, Wu J, Kim H, Kim K. Inhibition of δ-catenin palmitoylation slows the progression of prostate cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119741. [PMID: 38697304 DOI: 10.1016/j.bbamcr.2024.119741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of death in males. It has been reported that δ-catenin expression is upregulated during the late stage of prostate cancer. Palmitoylation promotes protein transport to the cytomembrane and regulates protein localization and function. However, the effect of δ-catenin palmitoylation on the regulation of cancer remains unknown. In this study, we utilized prostate cancer cells overexpressing mutant δ-catenin (J6A cells) to induce a depalmitoylation phenotype and investigate its effect on prostate cancer. Our results indicated that depalmitoylation of δ-catenin not only reduced its membrane expression but also promoted its degradation in the cytoplasm, resulting in a decrease in the effect of EGFR and E-cadherin signaling. Consequently, depalmitoylation of δ-catenin reduced the proliferation and metastasis of prostate cancer cells. Our findings provide novel insights into potential therapeutic strategies for controlling the progression of prostate cancer through palmitoylation-based targeting of δ-catenin.
Collapse
Affiliation(s)
- Beini Wang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Jin Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Republic of Korea.
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
δ-Catenin Participates in EGF/AKT/p21 Waf Signaling and Induces Prostate Cancer Cell Proliferation and Invasion. Int J Mol Sci 2021; 22:ijms22105306. [PMID: 34069970 PMCID: PMC8157876 DOI: 10.3390/ijms22105306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) is the second most leading cause of death in males. Our previous studies have demonstrated that δ-catenin plays an important role in prostate cancer progression. However, the molecular mechanism underlying the regulation of δ-catenin has not been fully explored yet. In the present study, we found that δ-catenin could induce phosphorylation of p21Waf and stabilize p21 in the cytoplasm, thus blocking its nuclear accumulation for the first time. We also found that δ-catenin could regulate the interaction between AKT and p21, leading to phosphorylation of p21 at Thr-145 residue. Finally, EGF was found to be a key factor upstream of AKT/δ-catenin/p21 for promoting proliferation and metastasis in prostate cancer. Our findings provide new insights into molecular controls of EGF and the development of potential therapeutics targeting δ-catenin to control prostate cancer progression.
Collapse
|
3
|
Zhang P, Schaefer-Klein J, Cheville JC, Vasmatzis G, Kovtun IV. Frequently rearranged and overexpressed δ-catenin is responsible for low sensitivity of prostate cancer cells to androgen receptor and β-catenin antagonists. Oncotarget 2018; 9:24428-24442. [PMID: 29849951 PMCID: PMC5966253 DOI: 10.18632/oncotarget.25319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The mechanism of prostate cancer (PCa) progression towards the hormone refractory state remains poorly understood. Treatment options for such patients are limited and present a major clinical challenge. Previously, δ-catenin was reported to promote PCa cell growth in vitro and its increased level is associated with PCa progression in vivo. In this study we show that re-arrangements at Catenin Delta 2 (CTNND2) locus, including gene duplications, are very common in clinically significant PCa and may underlie δ-catenin overexpression. We find that δ-catenin in PCa cells exists in a complex with E-cadherin, p120, and α- and β-catenin. Increased expression of δ-catenin leads to its further stabilization as well as upregulation and stabilization of its binding partners. Resistant to degradation and overexpressed δ-catenin isoform activates Wnt signaling pathway by increasing the level of nuclear β-catenin and subsequent stimulation of Tcf/Lef transcription targets. Evaluation of responses to treatments, with androgen receptor (AR) antagonist and β-catenin inhibitors revealed that cells with high levels of δ-catenin are more resistant to killing with single agent treatment than matched control cells. We show that combination treatment targeting both AR and β-catenin networks is more effective in suppressing tumor growth than targeting a single network. In conclusion, targeting clinically significant PCa with high levels of δ–catenin with anti-androgen and anti β-catenin combination therapy may prevent progression of the disease to a castration-resistant state and, thus, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Piyan Zhang
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John C Cheville
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Molecular Medicine and Mayo Clinic, Rochester, Minnesota, USA
| | - Irina V Kovtun
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Shrestha N, Shrestha H, Ryu T, Kim H, Simkhada S, Cho YC, Park SY, Cho S, Lee KY, Lee JH, Kim K. δ-Catenin Increases the Stability of EGFR by Decreasing c-Cbl Interaction and Enhances EGFR/Erk1/2 Signaling in Prostate Cancer. Mol Cells 2018; 41:320-330. [PMID: 29629558 PMCID: PMC5935102 DOI: 10.14348/molcells.2018.2292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 11/27/2022] Open
Abstract
δ-Catenin, a member of the p120-catenin subfamily of armadillo proteins, reportedly increases during the late stage of prostate cancer. Our previous study demonstrates that δ-catenin increases the stability of EGFR in prostate cancer cell lines. However, the molecular mechanism behind δ-catenin-mediated enhanced stability of EGFR was not explored. In this study, we hypothesized that δ-catenin enhances the protein stability of EGFR by inhibiting its lysosomal degradation that is mediated by c-casitas b-lineage lymphoma (c-Cbl), a RING domain E3 ligase. c-Cbl monoubiquitinates EGFR and thus facilitates its internalization, followed by lysosomal degradation. We observed that δ-catenin plays a key role in EGFR stability and downstream signaling. δ-Catenin competes with c-Cbl for EGFR binding, which results in a reduction of binding between c-Cbl and EGFR and thus decreases the ubiquitination of EGFR. This in turn increases the expression of membrane bound EGFR and enhances EGFR/Erk1/2 signaling. Our findings add a new perspective on the role of δ-catenin in enhancing EGFR/Erk1/2 signaling-mediated prostate cancer.
Collapse
Affiliation(s)
- Nensi Shrestha
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hridaya Shrestha
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922, Korea
| | - Shishli Simkhada
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Kwang-Youl Lee
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Jae-Hyuk Lee
- Chonnam National University Hwasun Hospital & Medical School, Hwasun 58128, Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
5
|
Interaction of EGFR to δ-catenin leads to δ-catenin phosphorylation and enhances EGFR signaling. Sci Rep 2016; 6:21207. [PMID: 26883159 PMCID: PMC4756308 DOI: 10.1038/srep21207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/19/2016] [Indexed: 11/21/2022] Open
Abstract
Expression of δ-catenin reportedly increases during late stage prostate cancer. Furthermore, it has been demonstrated that expression of EGFR is enhanced in hormone refractory prostate cancer. In this study, we investigated the possible correlation between EGFR and δ-catenin in prostate cancer cells. We found that EGFR interacted with δ-catenin and the interaction decreased in the presence of EGF. We also demonstrated that, on one hand, EGFR phosphorylated δ-catenin in a Src independent manner in the presence of EGF and on the other hand, δ-catenin enhanced protein stability of EGFR and strengthened the EGFR/Erk1/2 signaling pathway. Our findings added a new perspective to the interaction of EGFR to the E-cadherin complex. They also provided novel insights to the roles of δ-catenin in prostate cancer cells.
Collapse
|
6
|
Klinke DJ, Horvath N, Cuppett V, Wu Y, Deng W, Kanj R. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway. Mol Biol Cell 2015. [PMID: 26224311 PMCID: PMC4710243 DOI: 10.1091/mbc.e15-02-0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein-protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin-induced gene expression.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506 )
| | - Nicholas Horvath
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Vanessa Cuppett
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Yueting Wu
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Wentao Deng
- Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Rania Kanj
- Department of Immunology, Microbiology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
7
|
Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun 2015; 6:6689. [DOI: 10.1038/ncomms7689] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/20/2015] [Indexed: 11/08/2022] Open
|
8
|
Markham NO, Doll CA, Dohn MR, Miller RK, Yu H, Coffey RJ, McCrea PD, Gamse JT, Reynolds AB. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia. Mol Biol Cell 2014; 25:2592-603. [PMID: 25009281 PMCID: PMC4148249 DOI: 10.1091/mbc.e13-08-0492] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Isoform-specific expression of p120 affects cell motility and migration during development and tumor progression. The DIPA coiled-coil protein is a novel binding partner to the conserved isoform 1–specific head domain of p120 family members. Zebrafish data suggest that DIPA is mechanistically linked to p120 isoform–specific function in development. p120-catenin (p120) modulates adherens junction (AJ) dynamics by controlling the stability of classical cadherins. Among all p120 isoforms, p120-3A and p120-1A are the most prevalent. Both stabilize cadherins, but p120-3A is preferred in epithelia, whereas p120-1A takes precedence in neurons, fibroblasts, and macrophages. During epithelial-to-mesenchymal transition, E- to N-cadherin switching coincides with p120-3A to -1A alternative splicing. These isoforms differ by a 101–amino acid “head domain” comprising the p120-1A N-terminus. Although its exact role is unknown, the head domain likely mediates developmental and cancer-associated events linked to p120-1A expression (e.g., motility, invasion, metastasis). Here we identified delta-interacting protein A (DIPA) as the first head domain–specific binding partner and candidate mediator of isoform 1A activity. DIPA colocalizes with AJs in a p120-1A- but not 3A-dependent manner. Moreover, all DIPA family members (Ccdc85a, Ccdc85b/DIPA, and Ccdc85c) interact reciprocally with p120 family members (p120, δ-catenin, p0071, and ARVCF), suggesting significant functional overlap. During zebrafish neural tube development, both knockdown and overexpression of DIPA phenocopy N-cadherin mutations, an effect bearing functional ties to a reported mouse hydrocephalus phenotype associated with Ccdc85c. These studies identify a novel, highly conserved interaction between two protein families that may participate either individually or collectively in N-cadherin–mediated development.
Collapse
Affiliation(s)
- Nicholas O Markham
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Caleb A Doll
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Michael R Dohn
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel K Miller
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Huapeng Yu
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Robert J Coffey
- Epithelial Biology Center, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Albert B Reynolds
- Vanderbilt-Ingram Cancer Center, Cancer Biology Department, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
9
|
Suppressor of cytokine signaling 1 modulates invasion and metastatic potential of colorectal cancer cells. Mol Oncol 2014; 8:942-55. [PMID: 24726456 DOI: 10.1016/j.molonc.2014.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 11/24/2022] Open
Abstract
Suppressor of cytokine signaling (SOCS) 1 is an inducible negative regulator of cytokine signaling but its role in human cancer is not completely established. Here we report that, while SOCS1 is expressed in normal colonic epithelium and colon adenocarcinomas, its level decreases during progression of colon adenocarcinomas, the lowest level being found in the most aggressive stage and least differentiated carcinomas. Forced expression of SOCS1 in metastatic colorectal SW620 cells reverses many characteristics of Epithelial-Mesenchymal Transition (EMT), as highlighted by the disappearance of the transcription factor ZEB1 and the mesenchymal form of p120ctn and the re-expression of E-cadherin. Furthermore, miRNA profiling indicated that SOCS1 also up-regulates the expression of the mir-200 family of miRNAs, which can promote the mesenchymal-epithelial transition and reduce tumor cell migration. Accordingly, overexpression of SOCS1 induced cell morphology changes and dramatically reduced tumor cell invasion in vitro. When injected in nude mice, SOCS1-expressing SW620 cells induced metastases in a smaller number of animals than parental SW620 cells, and did not generate any adrenal gland or bone metastasis. Overall, our results suggest that SOCS1 controls metastatic progression of colorectal tumors by preventing the mesenchymal-epithelial transition (MET), including E-cadherin expression. This pathway may be associated with survival to colorectal cancer by reducing the capacity of generating metastases.
Collapse
|
10
|
Zhang H, Dai SD, Zhang D, Liu D, Zhang FY, Zheng TY, Cui MM, Dai CL. Delta-catenin promotes the proliferation and invasion of colorectal cancer cells by binding to E-cadherin in a competitive manner with p120 catenin. Target Oncol 2013; 9:53-61. [PMID: 23423910 DOI: 10.1007/s11523-013-0269-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/05/2013] [Indexed: 11/26/2022]
Abstract
δ-Catenin is the only member of the p120 catenin (p120ctn) subfamily whose normal pattern of expression is restricted to the brain. Similar to p120ctn, δ-catenin can bind to the juxtamembrane domain of E-cadherin. We examined the expression of δ-catenin, p120ctn, and E-cadherin using immunohistochemistry in 95 cases of colorectal cancer (CRC) and 15 normal colon tissues. Co-immunoprecipitation was used to examine whether δ-catenin competed with p120ctn to bind E-cadherin in CRC cells. The effects of δ-catenin overexpression or siRNA-mediated knockdown on the proliferation and invasive ability of CRC cells were investigated using the MTT and Matrigel invasion assays. The results showed that positive δ-catenin expression was significantly more frequent in CRC compared to normal colon tissues and associated with poor differentiation, stage III-IV disease, and lymph node metastasis in CRC (all P < 0.05). In two CRC cell lines, δ-catenin bound to E-cadherin in competition with p120ctn. Overexpression of δ-catenin promoted the proliferation and invasion of CRC cells; knockdown of δ-catenin reduced CRC cell proliferation and invasion. In conclusion, we speculate that overexpression of δ-catenin reduces the expression of E-cadherin and alters the balance between E-cadherin and p120ctn, which in turn affects the formation of intercellular adhesions and promotes invasion and metastasis in CRC.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Colorectal Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Miyake M, Yamashiro K, Nakanishi H, Nakata I, Akagi-Kurashige Y, Tsujikawa A, Moriyama M, Ohno-Matsui K, Mochizuki M, Yamada R, Matsuda F, Yoshimura N. Association of paired box 6 with high myopia in Japanese. Mol Vis 2012; 18:2726-35. [PMID: 23213273 PMCID: PMC3513191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/15/2012] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The objective of this study was to investigate whether genetic variations in the paired box 6 (PAX6) gene are associated with high myopia in Japanese subjects. METHODS A total of 1,307 unrelated Japanese patients with high myopia (axial length ≥26 mm in both eyes) and two independent control groups were evaluated (333 cataract patients without high myopia and 923 age-matched healthy Japanese individuals). We genotyped three tag single-nucleotide polymorphisms (SNPs) in PAX6: rs2071754, rs644242, and rs3026354. These SNPs provided 100% coverage of all phase II HapMap SNPs within the PAX6 region (minor allele frequency ≥0.10; r(2) threshold: 0.90). Chi-square tests for trend and multivariable logistic regression were conducted. RESULTS Genotype distributions in the three SNPs were in accordance with the Hardy-Weinberg equilibrium. After adjusting for age and sex, evaluation of cataract control showed a marginal association with high myopia in rs644242 (odds ratio [95% confidence interval]=0.69 [0.49-0.96], p=0.026), and a significant association was observed in healthy Japanese controls (0.79 [0.66-0.96], p=0.015). We pooled two control cohorts to evaluate the association. This analysis revealed a strong association between rs644242 and high myopia (0.78 [0.65-0.92], p=0.0045). The rs644242 A allele was a protective allele for development of high myopia. Subanalysis also revealed that rs644242 was significantly associated with extreme high myopia (0.78 [0.64-0.95], p=0.0165). The other two SNPs did not show a significant association with this condition. CONCLUSIONS The current study showed a significant association of PAX6 with high and extreme myopia in Japanese participants. The A allele of rs644242 is a protective allele.
Collapse
Affiliation(s)
- Masahiro Miyake
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideo Nakanishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Isao Nakata
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yumiko Akagi-Kurashige
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan,Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Muka Moriyama
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Mochizuki
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Yamada
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Kim H, He Y, Yang I, Zeng Y, Kim Y, Seo YW, Murnane MJ, Jung C, Lee JH, Min JJ, Kwon DD, Kim KK, Lu Q, Kim K. δ-Catenin promotes E-cadherin processing and activates β-catenin-mediated signaling: implications on human prostate cancer progression. Biochim Biophys Acta Mol Basis Dis 2012; 1822:509-21. [PMID: 22261283 DOI: 10.1016/j.bbadis.2011.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 01/21/2023]
Abstract
δ-Catenin binds the juxtamembrane domain of E-cadherin and is known to be overexpressed in some human tumors. However, the functions of δ-catenin in epithelial cells and carcinomas remain elusive. We found that prostate cancer cells overexpressing δ-catenin show an increase in multi-layer growth in culture. In these cells, δ-catenin colocalizes with E-cadherin at the plasma membrane, and the E-cadherin processing is noticeably elevated. E-Cadherin processing induced by δ-catenin is serum-dependent and requires MMP- and PS-1/γ-secretase-mediated activities. A deletion mutant of δ-catenin that deprives the ability of δ-catenin to bind E-cadherin or to recruit PS-1 to E-cadherin totally abolishes the δ-catenin-induced E-cadherin processing and the multi-layer growth of the cells. In addition, prostate cancer cells overexpressing δ-catenin display an elevated total β-catenin level and increase its nuclear distribution, resulting in the activation of β-catenin/LEF-1-mediated transcription and their downstream target genes as well as androgen receptor-mediated transcription. Indeed, human prostate tumor xenograft in nude mice, which is derived from cells overexpressing δ-catenin, shows increased β-catenin nuclear localization and more rapid growth rates. Moreover, the metastatic xenograft tumor weights positively correlate with the level of 29kD E-cadherin fragment, and primary human prostate tumor tissues also show elevated levels of δ-catenin expression and the E-cadherin processing. Taken together, these results suggest that δ-catenin plays an important role in prostate cancer progression through inducing E-cadherin processing and thereby activating β-catenin-mediated oncogenic signals.
Collapse
Affiliation(s)
- Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Stable E-cadherin-based adherens junctions are pivotal in maintaining epithelial tissue integrity and are the major barrier for epithelial cancer metastasis. Proteins of the p120(ctn) subfamily have emerged recently as critical players for supporting this stability. The identification of the unique juxtamembrane domain (JMD) in E-cadherin that binds directly to delta-catenin/NPRAP/neurojungin (CTNND2) and p120(ctn) (CTNND1) provides a common motif for their interactions. Recently, crystallographic resolution of the JMD of p120(ctn) further highlighted possibilities of intervening between interactions of p120(ctn) subfamily proteins and E-cadherin for designing anti-cancer therapeutics. For most epithelial cancers, studies have demonstrated a reduction of p120(ctn) expression or alteration of its subcellular distribution. On the other hand, delta-catenin, a primarily neural-enriched protein in the brain of healthy individuals, is up-regulated in all cancer types that have been studied to date. Two research articles in the September 2010 issue of The Journal of Pathology increase our understanding of the involvement of these proteins in lung cancer. One reports the identification of rare p120(ctn) (CTNND1) gene amplification in lung cancer. One mechanism by which delta-catenin and p120(ctn) may play a role in carcinogenesis is their competitive binding to E-cadherin through the JMD. The other presents the first vigorous characterization of delta-catenin overexpression in lung cancer. Unexpectedly, the authors observed that delta-catenin promotes malignant phenotypes of non-small cell lung cancer by non-competitive binding to E-cadherin with p120(ctn) in the cytoplasm. Looking towards the future, the understanding of delta-catenin and p120(ctn) with and beyond their localization at the cell-cell junction should provide further insight into their roles in cancer pathogenesis.
Collapse
Affiliation(s)
- Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
14
|
Zhang JY, Wang Y, Zhang D, Yang ZQ, Dong XJ, Jiang GY, Zhang PX, Dai SD, Dong QZ, Han Y, Zhang S, Cui QZ, Wang EH. delta-Catenin promotes malignant phenotype of non-small cell lung cancer by non-competitive binding to E-cadherin with p120ctn in cytoplasm. J Pathol 2010; 222:76-88. [PMID: 20593408 DOI: 10.1002/path.2742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a member of the catenin family, little is known about the clinical significance and possible mechanism of delta-catenin expression in numerous tumours. We examined the expression of delta-catenin by immunohistochemistry in 115 cases of non-small cell lung cancer (NSCLC) (including 65 cases with follow-up records and 50 cases with paired lymph node metastasis lesions). The mRNA and protein expression of delta-catenin was also detected in 30 cases of paired lung cancer tissues and normal lung tissues by RT-PCR and western blotting, respectively. Co-immunoprecipitation was used to examine whether delta-catenin competitively bound to E-cadherin with p120ctn in lung cancer cells or not. The effects of delta-catenin on the activity of small GTPases and the biological behaviour of lung cancer cells were explored by pull-down assay, flow cytometry, MTT, and Matrigel invasive assay. The results showed that the mRNA and protein expression of delta-catenin was increased in lung cancer tissues; the positive expression rate of delta-catenin was significantly increased in adenocarcinoma, stage III-IV, paired lymph node metastasis lesions, and primary tumours with lymph node metastasis (all p < 0.05); and the postoperative survival period of patients with delta-catenin-positive expression was shorter than that of patients with delta-catenin-negative expression (p < 0.05). No competition between delta-catenin and p120ctn for binding to E-cadherin in cytoplasm was found in two lung cancer cell lines. By regulating the activity of small GTPases and changing the cell cycle, delta-catenin could promote the proliferation and invasion of lung cancer cells. We conclude that delta-catenin is an oncoprotein overexpressed in NSCLC and that increased delta-catenin expression is critical for maintenance of the malignant phenotype of lung cancer.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|