1
|
Sung JY, Lim GE, Goo J, Jung KJ, Chung JM, Jung HS, Kim YN, Shim J. TMEM39A and TMEM131 facilitate bulk transport of ECM proteins through large COPII vesicle formation. J Genet Genomics 2025; 52:189-203. [PMID: 39521045 DOI: 10.1016/j.jgg.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The growth of Caenorhabditis elegans involves multiple molting processes, during which old cuticles are shed and new cuticles are rapidly formed. This process requires the regulated bulk secretion of cuticle components. The transmembrane protein-39 (TMEM-39) mutant exhibits distinct dumpy and ruptured phenotypes characterized by notably thin cuticles. TMEM-39 primarily co-localizes with the coat protein II complex (COPII) in large vesicles rather than small COPII vesicles. These TMEM-39-associated large vesicles (TMEM-39-LVs) form robustly during the molting period and co-localize with various extracellular matrix components, including BLI-1 collagen, BLI-3 dual oxidase, and carboxypeptidases. Through immunoprecipitation using TMEM39A-FLAG and proteomics analysis in human sarcoma cells, we identify TMEM39A-associated proteins, including TMEM131. Knockdown of TMEM131 results in reduced TMEM39A-LV formation and collagen secretion in both C. elegans and human sarcoma cells, indicating a cooperative role between TMEM39A and TMEM131 in the secretion of extracellular components through the formation of large COPII vesicles. Given the conservation of TMEM39A and its associated proteins between C. elegans and humans, TMEM39A-LVs may represent a fundamental machinery for rapid and extensive secretion across metazoans.
Collapse
Affiliation(s)
- Jee Young Sung
- Cancer Metastasis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Ga-Eun Lim
- Cancer Metastasis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Jarim Goo
- Cancer Metastasis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Kyung Jin Jung
- Experimental Clinical Research Center, Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Jeong Min Chung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon-do, 24341, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon-do, 24341, Republic of Korea
| | - Yong-Nyun Kim
- Cancer Metastasis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
| | - Jaegal Shim
- Cancer Metastasis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea.
| |
Collapse
|
2
|
Ragle JM, Turzo A, Jackson A, Vo AA, Pham VT, Ward JD. The NHR-23-regulated putative protease inhibitor mlt-11 gene is necessary for C. elegans cuticle structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593762. [PMID: 38766248 PMCID: PMC11100798 DOI: 10.1101/2024.05.12.593762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
C. elegans molting offers a powerful entry point to understanding developmentally programmed apical extracellular matrix remodeling. However, the gene regulatory network controlling this process remains poorly understood. Focusing on targets of NHR-23, a key transcription factor that drives molting, we confirmed the Kunitz family protease inhibitor gene mlt-11 as an NHR-23 target. Through reporter assays, we identified NHR-23-binding sites that are necessary and sufficient for epithelial expression. We generated a translational fusion and demonstrated that MLT-11 is localized to the cuticle and lined openings to the exterior (vulva, rectum, mouth). We created a set of strains expressing varied levels of MLT-11 by deleting endogenous cis-regulatory element sequences. Combined deletion of two cis-regulatory elements caused developmental delay, motility defects, and failure of the cuticle barrier. Inactivation of mlt-11 by RNAi produced even more pronounced defects. mlt-11 is necessary to pattern every layer of the adult cuticle, suggesting a broad patterning role prior to the formation of the mature cuticle. Together these studies provide an entry point into understanding how individual cis-regulatory elements function to coordinate expression of oscillating genes involved in molting and how MLT-11 ensures proper cuticle assembly.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ariela Turzo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anton Jackson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Vivian T. Pham
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
4
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
5
|
Lee S, Lim GE, Kim YN, Koo HS, Shim J. AP2M1 Supports TGF-β Signals to Promote Collagen Expression by Inhibiting Caveolin Expression. Int J Mol Sci 2021; 22:ijms22041639. [PMID: 33561975 PMCID: PMC7915421 DOI: 10.3390/ijms22041639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
The extracellular matrix (ECM) is important for normal development and disease states, including inflammation and fibrosis. To understand the complex regulation of ECM, we performed a suppressor screening using Caenorhabditis elegans expressing the mutant ROL-6 collagen protein. One cuticle mutant has a mutation in dpy-23 that encodes the μ2 adaptin (AP2M1) of clathrin-associated protein complex II (AP-2). The subsequent suppressor screening for dpy-23 revealed the lon-2 mutation. LON-2 functions to regulate body size through negative regulation of the tumor growth factor-beta (TGF-β) signaling pathway responsible for ECM production. RNA-seq analysis showed a dominant change in the expression of collagen genes and cuticle components. We noted an increase in the cav-1 gene encoding caveolin-1, which functions in clathrin-independent endocytosis. By knockdown of cav-1, the reduced TGF-β signal was significantly restored in the dpy-23 mutant. In conclusion, the dpy-23 mutation upregulated cav-1 expression in the hypodermis, and increased CAV-1 resulted in a decrease of TβRI. Finally, the reduction of collagen expression including rol-6 by the reduced TGF-β signal influenced the cuticle formation of the dpy-23 mutant. These findings could help us to understand the complex process of ECM regulation in organism development and disease conditions.
Collapse
Affiliation(s)
- Saerom Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
- Department of Biochemistry, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ga-Eun Lim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
| | - Yong-Nyun Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
| | - Hyeon-Sook Koo
- Department of Biochemistry, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
- Correspondence: (H.-S.K.); (J.S.); Tel.: +82-2-2123-2695 (H.-S.K.); +82-31-920-2262 (J.S.)
| | - Jaegal Shim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si 10408, Gyeonggi-do, Korea; (S.L.); (G.-E.L.); (Y.-N.K.)
- Correspondence: (H.-S.K.); (J.S.); Tel.: +82-2-2123-2695 (H.-S.K.); +82-31-920-2262 (J.S.)
| |
Collapse
|
6
|
Mironov AA, Beznoussenko GV. Models of Intracellular Transport: Pros and Cons. Front Cell Dev Biol 2019; 7:146. [PMID: 31440506 PMCID: PMC6693330 DOI: 10.3389/fcell.2019.00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Intracellular transport is one of the most confusing issues in the field of cell biology. Many different models and their combinations have been proposed to explain the experimental data on intracellular transport. Here, we analyse the data related to the mechanisms of endoplasmic reticulum-to-Golgi and intra-Golgi transport from the point of view of the main models of intracellular transport; namely: the vesicular model, the diffusion model, the compartment maturation–progression model, and the kiss-and-run model. This review initially describes our current understanding of Golgi function, while highlighting the recent progress that has been made. It then continues to discuss the outstanding questions and potential avenues for future research with regard to the models of these transport steps. To compare the power of these models, we have applied the method proposed by K. Popper; namely, the formulation of prohibitive observations according to, and the consecutive evaluation of, previous data, on the basis on the new models. The levels to which the different models can explain the experimental observations are different, and to date, the most powerful has been the kiss-and-run model, whereas the least powerful has been the diffusion model.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
7
|
Wang CC, Chen BH, Lu LY, Hung KS, Yang YS. Preparation of Tyrosylprotein Sulfotransferases for In Vitro One-Pot Enzymatic Synthesis of Sulfated Proteins/Peptides. ACS OMEGA 2018; 3:11633-11642. [PMID: 30320268 PMCID: PMC6173500 DOI: 10.1021/acsomega.7b01533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Protein tyrosine sulfation (PTS), catalyzed by membrane-anchored tyrosylprotein sulfotransferase (TPST), is one of the most common post-translational modifications of secretory and transmembrane proteins. PTS, a key modulator of extracellular protein-protein interactions, accounts for various important biological activities, namely, virus entry, inflammation, coagulation, and sterility. The preparation and characterization of TPST is fundamental for understanding the synthesis of tyrosine-sulfated proteins and for studying PTS in biology. A sulfated protein was prepared using a TPST-coupled protein sulfation system that involves the generation of the active sulfate 3'-phosphoadenosine-5'-phosphosulfate (PAPS) through either PAPS synthetase (PAPSS) or phenol sulfotransferase. The preparation of sulfated proteins was confirmed through radiometric or immunochemical assays. In this study, enzymatically active Drosophila melanogaster TPST (DmTPST) and human TPSTs (hTPST1 and hTPST2) were expressed in Escherichia coli BL21(DE3) host cells and purified to homogeneity in high yield. Our results revealed that recombinant DmTPST was particularly useful considering its catalytic efficiency and ease of preparation in large quantities. This study provides tools for high-efficiency, one-step synthesis of sulfated proteins and peptides that are useful for further deciphering the mechanisms, functions, and future applications of PTS.
Collapse
Affiliation(s)
- Chen-Chu Wang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Bo-Han Chen
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Lu-Yi Lu
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| | - Kuo-Sheng Hung
- Department
of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, No.111, Section 3, Hsing-Long Road, Taipei 11696, Taiwan
| | - Yuh-Shyong Yang
- Department
of Biological Science and Technology, National
Chiao Tung University, No. 75, Po-Ai Street, Hsinchu 30050, Taiwan
| |
Collapse
|
8
|
Teuscher AC, Ewald CY. Overcoming Autofluorescence to Assess GFP Expression During Normal Physiology and Aging in Caenorhabditis elegans. Bio Protoc 2018; 8:e2940. [PMID: 30073182 DOI: 10.21769/bioprotoc.2940] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Green fluorescent protein (GFP) is widely used as a molecular tool to assess protein expression and localization. In C. elegans, the signal from weakly expressed GFP fusion proteins is masked by autofluorescence emitted from the intestinal lysosome-related gut granules. For instance, the GFP fluorescence from SKN-1 transcription factor fused to GFP is barely visible with common GFP (FITC) filter setups. Furthermore, this intestinal autofluorescence increases upon heat stress, oxidative stress (sodium azide), and during aging, thereby masking GFP expression even from proximal tissues. Here, we describe a triple band GFP filter setup that separates the GFP signal from autofluorescence, displaying GFP in green and autofluorescence in yellow. In addition, yellow fluorescent protein (YFP) remains distinguishable from both the yellowish autofluorescence and GFP with this triple band filter setup. Although some GFP intensity might be lost with the triple band GFP filter setup, the advantage is that no modification of currently used transgenic GFP lines is needed and these GFP filters are easy to install. Hence, by using this triple band GFP filter setup, the investigators can easily distinguish autofluorescence from GFP and YFP in their favorite transgenic C. elegans lines.
Collapse
Affiliation(s)
- Alina C Teuscher
- Department of Health Sciences and Technology, Institute of Translational Medicine, Eidgenössische Technische Hochschule (ETH) Zürich, Schwerzenbach-Zürich, Switzerland
| | - Collin Y Ewald
- Department of Health Sciences and Technology, Institute of Translational Medicine, Eidgenössische Technische Hochschule (ETH) Zürich, Schwerzenbach-Zürich, Switzerland
| |
Collapse
|
9
|
Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 2017; 49:186-201. [DOI: 10.1016/j.tice.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023]
|
10
|
Yang YS, Wang CC, Chen BH, Hou YH, Hung KS, Mao YC. Tyrosine sulfation as a protein post-translational modification. Molecules 2015; 20:2138-64. [PMID: 25635379 PMCID: PMC6272617 DOI: 10.3390/molecules20022138] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/06/2015] [Accepted: 01/14/2015] [Indexed: 12/17/2022] Open
Abstract
Integration of inorganic sulfate into biological molecules plays an important role in biological systems and is directly involved in the instigation of diseases. Protein tyrosine sulfation (PTS) is a common post-translational modification that was first reported in the literature fifty years ago. However, the significance of PTS under physiological conditions and its link to diseases have just begun to be appreciated in recent years. PTS is catalyzed by tyrosylprotein sulfotransferase (TPST) through transfer of an activated sulfate from 3'-phosphoadenosine-5'-phosphosulfate to tyrosine in a variety of proteins and peptides. Currently, only a small fraction of sulfated proteins is known and the understanding of the biological sulfation mechanisms is still in progress. In this review, we give an introductory and selective brief review of PTS and then summarize the basic biochemical information including the activity and the preparation of TPST, methods for the determination of PTS, and kinetics and reaction mechanism of TPST. This information is fundamental for the further exploration of the function of PTS that induces protein-protein interactions and the subsequent biochemical and physiological reactions.
Collapse
Affiliation(s)
- Yuh-Shyong Yang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Chen-Chu Wang
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Bo-Han Chen
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - You-Hua Hou
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| | - Kuo-Sheng Hung
- Department of Neurosurgery, Center of Excellence for Clinical Trial and Research, Taipei Medical University-Wan Fang Medical Center, Taipei 11696, Taiwan.
| | - Yi-Chih Mao
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan.
| |
Collapse
|
11
|
Ewald CY, Landis JN, Porter Abate J, Murphy CT, Blackwell TK. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 2014; 519:97-101. [PMID: 25517099 PMCID: PMC4352135 DOI: 10.1038/nature14021] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/27/2014] [Indexed: 01/04/2023]
Abstract
Interventions that delay ageing mobilize mechanisms that protect and repair cellular components, but it is unknown how these interventions might slow the functional decline of extracellular matrices, which are also damaged during ageing. Reduced insulin/IGF-1 signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile Caenorhabditis elegans also allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that withstands harsh conditions. It has been suggested that rIIS delays C. elegans ageing through activation of dauer-related processes during adulthood, but some rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits. Here we show that rIIS can promote C. elegans longevity through a program that is genetically distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) orthologue SKN-1 acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in longevity, but is rendered dispensable for rIIS lifespan extension by even mild activity of dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, SKN-1 most prominently increases expression of collagens and other extracellular matrix genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-related decline in collagen expression. These collagens mediate adulthood extracellular matrix remodelling, and are needed for ageing to be delayed by interventions that do not involve dauer traits. By genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation of processes of general importance for longevity. The importance of collagen production in diverse anti-ageing interventions implies that extracellular matrix remodelling is a generally essential signature of longevity assurance, and that agents promoting extracellular matrix youthfulness may have systemic benefit.
Collapse
Affiliation(s)
- Collin Y Ewald
- 1] Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA [2] Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA [3] Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| | - Jess N Landis
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, 148 Carl Icahn Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Jess Porter Abate
- 1] Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA [2] Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA [3] Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, 148 Carl Icahn Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - T Keith Blackwell
- 1] Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA [2] Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA [3] Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| |
Collapse
|
12
|
Kanan Y, Brobst D, Han Z, Naash MI, Al-Ubaidi MR. Fibulin 2, a tyrosine O-sulfated protein, is up-regulated following retinal detachment. J Biol Chem 2014; 289:13419-33. [PMID: 24692557 DOI: 10.1074/jbc.m114.562157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retinal detachment is the physical separation of the retina from the retinal pigment epithelium. It occurs during aging, trauma, or during a variety of retinal disorders such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, or as a complication following cataract surgery. This report investigates the role of fibulin 2, an extracellular component, in retinal detachment. A major mechanism for detachment resolution is enhancement of cellular adhesion between the retina and the retinal pigment epithelium and prevention of its cellular migration. This report shows that fibulin 2 is mainly present in the retinal pigment epithelium, Bruch membrane, choriocapillary, and to a lesser degree in the retina. In vitro studies revealed the presence of two isoforms for fibulin 2. The small isoform is located inside the cell, and the large isoform is present inside and outside the cells. Furthermore, fibulin 2 is post-translationally modified by tyrosine sulfation, and the sulfated isoform is present outside the cell, whereas the unsulfated pool is internally located. Interestingly, sulfated fibulin 2 significantly reduced the rate of cellular growth and migration. Finally, levels of fibulin 2 dramatically increased in the retinal pigment epithelium following retinal detachment, suggesting a direct role for fibulin 2 in the re-attachment of the retina to the retinal pigment epithelium. Understanding the role of fibulin 2 in enhancing retinal attachment is likely to help improve the current therapies or allow the development of new strategies for the treatment of this sight-threatening condition.
Collapse
Affiliation(s)
- Yogita Kanan
- From the Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | | | | | | | |
Collapse
|
13
|
Kim TH, Kim YJ, Cho JW, Shim J. A novel zinc-carboxypeptidase SURO-1 regulates cuticle formation and body morphogenesis in Caenorhabditis elegans. FEBS Lett 2010; 585:121-7. [PMID: 21094156 DOI: 10.1016/j.febslet.2010.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 11/27/2022]
Abstract
Cuticle formation and molting are critical for the development of Caenorhabditis elegans. To understand cuticle formation more clearly, we screened for suppressors in transgenic worms that expressed dominant ROL-6 collagen proteins. The suro-1 mutant, which is mild dumpy, exhibited a different ROL-6::GFP localization pattern compared to other Dpy mutants. We identified mutations in three suro-1 mutants, and found that suro-1 (ORF R11A5.7) encodes a putative zinc-carboxypeptidase homologue. The expression of this enzyme in the hypodermis and the genetic interactions between this enzyme and other collagen-modifying enzyme mutants suggest a regulatory role in collagen processing and cuticle organization for this novel carboxypeptidase. These findings aid our understanding of cuticle formation during worm development.
Collapse
Affiliation(s)
- Tai Hoon Kim
- Cancer Experimental Resources Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | | | | | | |
Collapse
|