1
|
The LysR-Type Transcription Regulator YhjC Promotes the Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2023; 24:ijms24021302. [PMID: 36674819 PMCID: PMC9867438 DOI: 10.3390/ijms24021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella Typhimurium is a Gram-negative intestinal pathogen that can infect humans and a variety of animals, causing gastroenteritis or serious systemic infection. Replication within host macrophages is essential for S. Typhimurium to cause systemic infection. By analyzing transcriptome data, the expression of yhjC gene, which encodes a putative regulator in S. Typhimurium, was found to be significantly up-regulated after the internalization of Salmonella by macrophages. Whether yhjC gene is involved in S. Typhimurium systemic infection and the related mechanisms were investigated in this study. The deletion of yhjC reduced the replication ability of S. Typhimurium in macrophages and decreased the colonization of S. Typhimurium in mouse systemic organs (liver and spleen), while increasing the survival rate of the infected mice, suggesting that YhjC protein promotes systemic infection by S. Typhimurium. Furthermore, by using transcriptome sequencing and RT-qPCR assay, the transcription of several virulence genes, including spvD, iroCDE and zraP, was found to be down-regulated after the deletion of yhjC. Electrophoretic mobility shift assay showed that YhjC protein can directly bind to the promoter region of spvD and zraP to promote their transcription. These findings suggest that YhjC contributes to the systemic virulence of S. Typhimurium via the regulation of multiple virulence genes and YhjC could represent a promising target to control S. Typhimurium infection.
Collapse
|
2
|
Cellular RNA Targets of Cold Shock Proteins CspC and CspE and Their Importance for Serum Resistance in Septicemic Escherichia coli. mSystems 2022; 7:e0008622. [PMID: 35695420 PMCID: PMC9426608 DOI: 10.1128/msystems.00086-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The RNA chaperones, cold shock proteins CspC and CspE, are important in stress response and adaptation. We studied their role in the pathogenesis of a virulent Escherichia coli, representative of extraintestinal pathogenic E. coli (ExPEC) which are serum resistant and septicemic. We performed a global analysis to identify transcripts that interact with these cold shock proteins (CSPs), focusing on virulence-related genes. We used CLIP-seq, which combines UV cross-linking, immunoprecipitation and RNA sequencing. A large number of transcripts bound to the CSPs were identified, and many bind both CspC and CspE. Many transcripts were of genes involved in protein synthesis, transcription and energy metabolism. In addition, there were virulence-related genes, (i.e., fur and ryhB), essential for iron homeostasis. The CLIP-seq results were validated on two transcripts, clpX and tdcA, reported as virulence-associated. Deletion of either CspC or CspE significantly decreased their transcript levels and in a double deletion mutant cspC/cspE, the transcript stability of tdcA and clpX was reduced by 32-fold and 10-fold, respectively. We showed that these two genes are important for virulence, as deleting either of them resulted in loss of serum resistance, a requirement for sepsis. As several virulence-related transcripts interact with CspC or CspE, we determined the importance of these proteins for growth in serum and showed that deletion of either gene significantly reduced serum survival. This phenotype could be partially complemented by cspE and fully complemented by cspC. These results indicate that the two RNA chaperones are essential for virulence, and that CspC particularly critical. IMPORTANCE Virulent Escherichia coli strains that cause infections outside the intestinal tract—extraintestinal pathogenic E. coli (ExPEC)—constitute a major clinical problem worldwide. They are involved in several distinct conditions, including urinary tract infections, newborn meningitis, and sepsis. Due to increasing antibiotic resistance, these strains are a main factor in hospital and community-acquired infections. Because many strains, which do not cross-react immunologically are involved, developing a simple vaccine is not possible. Therefore, it is essential to understand the pathogenesis of these bacteria to identify potential targets for developing drugs or vaccines. One of the least investigated systems involves RNA binding proteins, important for stability of transcripts and global gene regulation. Two such proteins are CspC and CspE (“cold shock proteins”), RNA chaperones involved in stress adaptation. Here we performed a global analysis to identify the transcripts which are affected by these two chaperones, with focus on virulence-associated transcripts.
Collapse
|
3
|
Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii. Int J Mol Sci 2021; 22:ijms22169077. [PMID: 34445780 PMCID: PMC8396566 DOI: 10.3390/ijms22169077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.
Collapse
|
4
|
Kehl A, Noster J, Hensel M. Eat in or Take out? Metabolism of Intracellular Salmonella enterica. Trends Microbiol 2020; 28:644-654. [DOI: 10.1016/j.tim.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
|
5
|
Zhi Y, Lin SM, Ahn KB, Ji HJ, Guo HC, Ryu S, Seo HS, Lim S. ptsI gene in the phosphotransfer system is a potential target for developing a live attenuated Salmonella vaccine. Int J Mol Med 2020; 45:1327-1340. [PMID: 32323733 PMCID: PMC7138283 DOI: 10.3892/ijmm.2020.4505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 11/15/2022] Open
Abstract
Salmonella enterica serovar Typhimurium causes invasive non-typhoidal Salmonella diseases in animals and humans, resulting in a high mortality rate and huge economic losses globally. As the prevalence of antibiotic-resistant Salmonella has been increasing, vaccination is thought to be the most effective and economical strategy to manage salmonellosis. The present study aimed to investigate whether dysfunction in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), which is critical for carbon uptake and survival in macrophages, may be adequate to generate Salmonella-attenuated vaccine strains. A Salmonella strain (KST0555) was generated by deleting the ptsI gene from the PTS and it was revealed that this auxotrophic mutant was unable to efficiently utilize predominant carbon sources during infection (glucose and glycerol), reduced its invasion and replication capacity in macrophages, and significantly (P=0.0065) lowered its virulence in the setting of a mouse colitis model, along with a substantially decreased intestinal colonization and invasiveness compared with its parent strain. The reverse transcription-quantitative PCR results demonstrated that the virulence genes in Salmonella pathogenicity island-1 (SPI-1) and -2 (SPI-2) and the motility of KST0555 were all downregulated compared with its parent strain. Finally, it was revealed that when mice were immunized orally with live KST0555, Salmonella-specific humoral and cellular immune responses were effectively elicited, providing protection against Salmonella infection. Thus, the present promising data provides a strong rationale for the advancement of KST0555 as a live Salmonella vaccine candidate and ptsI as a potential target for developing a live attenuated bacterial vaccine strain.
Collapse
Affiliation(s)
- Yong Zhi
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Shun Mei Lin
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Ki Bum Ahn
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Hyun Jung Ji
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730049, P.R. China
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Seong Seo
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Sangyong Lim
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| |
Collapse
|
6
|
Lim S, Han A, Kim D, Seo HS. Transcriptional Profiling of an AttenuatedSalmonellaTyphimuriumptsIMutant Strain Under Low-oxygen Conditions using Microarray Analysis. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.3.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ahreum Han
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Dongho Kim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| |
Collapse
|
7
|
RNA sequencing reveals differences between the global transcriptomes of Salmonella enterica serovar enteritidis strains with high and low pathogenicities. Appl Environ Microbiol 2013; 80:896-906. [PMID: 24271167 DOI: 10.1128/aem.02740-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis.
Collapse
|
8
|
Dandekar T, Astrid F, Jasmin P, Hensel M. Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front Microbiol 2012; 3:164. [PMID: 22563326 PMCID: PMC3342586 DOI: 10.3389/fmicb.2012.00164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/12/2012] [Indexed: 11/15/2022] Open
Abstract
The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole (SCV) in host cells. We summarize latest results on metabolic requirements for Salmonella during infection. This includes intracellular phenotypes of mutant strains based on metabolic modeling and experimental tests, isotopolog profiling using 13C-compounds in intracellular Salmonella, and complementation of metabolic defects for attenuated mutant strains towards a comprehensive understanding of the metabolic requirements of the intracellular lifestyle of Salmonella. Helpful for this are also genomic comparisons. We outline further recent studies and which analyses of intracellular phenotypes and improved metabolic simulations were done and comment on technical required steps as well as progress involved in the iterative refinement of metabolic flux models, analyses of mutant phenotypes, and isotopolog analyses. Salmonella lifestyle is well-adapted to the SCV and its specific metabolic requirements. Salmonella metabolism adapts rapidly to SCV conditions, the metabolic generalist Salmonella is quite successful in host infection.
Collapse
Affiliation(s)
- Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
9
|
Troxell B, Fink RC, Porwollik S, McClelland M, Hassan HM. The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC Microbiol 2011; 11:236. [PMID: 22017966 PMCID: PMC3212961 DOI: 10.1186/1471-2180-11-236] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/21/2011] [Indexed: 01/17/2023] Open
Abstract
Background The Ferric uptake regulator (Fur) is a transcriptional regulator that controls iron homeostasis in bacteria. Although the regulatory role of Fur in Escherichia coli is well characterized, most of the studies were conducted under routine culture conditions, i.e., in ambient oxygen concentration. To reveal potentially novel aspects of the Fur regulon in Salmonella enterica serovar Typhimurium under oxygen conditions similar to that encountered in the host, we compared the transcriptional profiles of the virulent wild-type strain (ATCC 14028s) and its isogenic Δfur strain under anaerobic conditions. Results Microarray analysis of anaerobically grown Δfur S. Typhimurium identified 298 differentially expressed genes. Expression of several genes controlled by Fnr and NsrR appeared to be also dependent on Fur. Furthermore, Fur was required for the activity of the cytoplasmic superoxide disumutases (MnSOD and FeSOD). The regulation of FeSOD gene, sodB, occurred via small RNAs (i.e., the ryhB homologs, rfrA and rfrB) with the aid of the RNA chaperone Hfq. The transcription of sodA was increased in Δfur; however, the enzyme was inactive due to the incorporation of iron instead of manganese in SodA. Additionally, in Δfur, the expression of the gene coding for the ferritin-like protein (ftnB) was down-regulated, while the transcription of the gene coding for the nitric oxide (NO·) detoxifying flavohemoglobin (hmpA) was up-regulated. The promoters of ftnB and hmpA do not contain recognized Fur binding motifs, which indicated their probable indirect regulation by Fur. However, Fur activation of ftnB was independent of Fnr. In addition, the expression of the gene coding for the histone-like protein, H-NS (hns) was increased in Δfur. This may explain the observed down-regulation of the tdc operon, responsible for the anaerobic degradation of threonine, and ftnB in Δfur. Conclusions This study determined that Fur is a positive factor in ftnB regulation, while serving to repress the expression of hmpA. Furthermore, Fur is required for the proper expression and activation of the antioxidant enzymes, FeSOD and MnSOD. Finally, this work identified twenty-six new targets of Fur regulation, and demonstrates that H-NS repressed genes are down-regulated in Δfur.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | | | | | | | |
Collapse
|