1
|
Corallo S, Lasagna A, Filippi B, Alaimo D, Tortorella A, Serra F, Vanoli A, Pedrazzoli P. Unlocking the Potential: Epstein-Barr Virus (EBV) in Gastric Cancer and Future Treatment Prospects, a Literature Review. Pathogens 2024; 13:728. [PMID: 39338919 PMCID: PMC11435077 DOI: 10.3390/pathogens13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Gastric cancer (GC) is a complex disease with various etiologies. While Helicobacter pylori infection is still one of the leading risk factors for GC, increasing evidence suggests a link between GC and other infective agents such as Epstein Bar Virus (EBV). EBV-associated gastric cancer (EBVaGC) is now recognized as a distinct subgroup of GC, and the complex interactions between the virus and gastric mucosa may influence its development. A recent integrative analysis of the genome and proteome of GC tissues by The Cancer Genome Atlas project has identified EBVaGC as a specific subtype characterized by PIK3CA and ARID1A mutations, extensive DNA hyper-methylation, and activation of immune signaling pathways. These molecular characteristics are markers of the unique molecular profile of this subset of GC and are potential targets for therapy. This review aims to provide an overview of the current knowledge on EBVaGC. It will focus on the epidemiology, clinic-pathological features, and genetic characteristics of EBVaGC. Additionally, it will discuss recent data indicating the potential use of EBV infection as a predictive biomarker of response to chemotherapy and immune checkpoint inhibitors. The review also delves into potential therapeutic approaches for EBVaGC, including targeted therapies and adoptive immunotherapy, highlighting the promising potential of EBV as a therapeutic target.
Collapse
Affiliation(s)
- Salvatore Corallo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angioletta Lasagna
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Beatrice Filippi
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Domiziana Alaimo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Anna Tortorella
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Francesco Serra
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Alessandro Vanoli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Anatomic Pathology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy; (B.F.); (D.A.); (A.T.); (F.S.); (P.P.)
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
2
|
Salnikov MY, MacNeil KM, Mymryk JS. The viral etiology of EBV-associated gastric cancers contributes to their unique pathology, clinical outcomes, treatment responses and immune landscape. Front Immunol 2024; 15:1358511. [PMID: 38596668 PMCID: PMC11002251 DOI: 10.3389/fimmu.2024.1358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Otolaryngology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
3
|
Hermida LC, Gertz EM, Ruppin E. Predicting cancer prognosis and drug response from the tumor microbiome. Nat Commun 2022; 13:2896. [PMID: 35610202 PMCID: PMC9130323 DOI: 10.1038/s41467-022-30512-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor gene expression is predictive of patient prognosis in some cancers. However, RNA-seq and whole genome sequencing data contain not only reads from host tumor and normal tissue, but also reads from the tumor microbiome, which can be used to infer the microbial abundances in each tumor. Here, we show that tumor microbial abundances, alone or in combination with tumor gene expression, can predict cancer prognosis and drug response to some extent-microbial abundances are significantly less predictive of prognosis than gene expression, although similarly as predictive of drug response, but in mostly different cancer-drug combinations. Thus, it appears possible to leverage existing sequencing technology, or develop new protocols, to obtain more non-redundant information about prognosis and drug response from RNA-seq and whole genome sequencing experiments than could be obtained from tumor gene expression or genomic data alone.
Collapse
Affiliation(s)
- Leandro C Hermida
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - E Michael Gertz
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
4
|
Lee SH, Choi SJ, Choi W, Cho S, Cho M, Kim DS, Kang BW, Kim JG, Lee YM, Cho H, Kang H. Cisplatin Resistance in Epstein-Barr-Virus-Associated Gastric Carcinoma Acquired through ATM Methylation. Cancers (Basel) 2021; 13:cancers13174252. [PMID: 34503060 PMCID: PMC8428228 DOI: 10.3390/cancers13174252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gastric cancer (GC) is the fifth-leading type of cancer and the third –leading cause of death from cancer. Epstein-Barr virus-associated gastric carcinoma (EBVaGC) is recently accountable for 10% of all the GC worldwide. Platinum drugs such as cisplatin and oxaliplatin are the first-line choice in GC chemotherapy. The widespread use of cisplatin leads to make tumor cells develop single or multiple drug resistance via various mechanisms. DNA hypermethylation on tumor suppressor genes is one of causes leading to drug resistances. 5-Azacytidine (5-AZA) is a chemical analogue of cytidine and inhibits DNA methyltransferase, resulting in DNA hypomethylation. Our main objective was to identify synergistic effect of two important GC drugs whose mechanisms may be in complementary cooperation. We found that cisplatin enhances its anticancer activity with 5-AZA through DNA demethylation in EBVaGC. Identifying this synergistic effect of two important GC drugs can be useful to treat EBVaGC which shows resistance to platinum-based chemotherapy. Abstract Epstein–Barr-virus-associated gastric carcinoma (EBVaGC), first reported in 1992, currently accounts for 10% of all gastric carcinoma worldwide. EBVaGC has unique DNA hypermethylation phenotypes that allow for higher proportions of DNA methylation than any other gastric cancer. CpG islands in the gene promoter region are one of the major regions in which DNA methylation controls gene transcription. Despite cisplatin-based chemotherapy being one of the standard treatment regimens for advanced gastric cancer, including EBVaGC, cisplatin alone or in combination with 5-fluorouracil has been limited by its less potent anticancer activity and the occurrence of cisplatin resistance. Accordingly, the current study evaluated the anticancer activities of a combination of cisplatin and 5-Azacytidine (5-AZA) against EBVaGC. Our findings showed that cisplatin upregulated the DNMT3A gene, whereas shRNA-targeted removal of DNMT3A mRNA contributed to cisplatin-mediated EBV lytic reactivation. Moreover, the removal of DNMT3A mRNA upregulated the ATM gene through DNA demethylation on the ATM promoter. Furthermore, CRISPR/Cas9-targeted removal of the ATM gene resulted in significantly reduced cell susceptibility and EBV lytic reactivation by a combination of cisplatin and DNMT3A inhibitor 5-AZA. Finally, 5-AZA exhibited a synergistic effect with cisplatin in anti-EBV and anti-EBVaGC activities by increasing drug susceptibility and EBV lytic reactivation. The aforementioned results suggest that cisplatin combined with DNA methylation inhibitors could be a novel therapeutic approach for EBVaGC.
Collapse
Affiliation(s)
- Sun Hee Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Su Jin Choi
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Wonhyeok Choi
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Subin Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Miyeon Cho
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Byung Woog Kang
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - Jong Gwang Kim
- Department of Oncology/Hematology, Cancer Research Institute, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41405, Korea; (B.W.K.); (J.G.K.)
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Department of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Hyosun Cho
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.H.L.); (S.J.C.); (S.C.); (M.C.)
- Correspondence: (H.C.); (H.K.); Tel.: +82-02-901-8678 (H.C.); +82-053-950-8569 (H.K.); Fax: +82-02-901-8386 (H.C.); +82-053-950-8557 (H.K.)
| |
Collapse
|
5
|
Sadri Nahand J, Rabiei N, Fathazam R, Taghizadieh M, Ebrahimi MS, Mahjoubin-Tehran M, Bannazadeh Baghi H, Khatami A, Abbasi-Kolli M, Mirzaei HR, Rahimian N, Darvish M, Mirzaei H. Oncogenic viruses and chemoresistance: What do we know? Pharmacol Res 2021; 170:105730. [PMID: 34119621 DOI: 10.1016/j.phrs.2021.105730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Chemoresistance is often referred to as a major leading reason for cancer therapy failure, causing cancer relapse and further metastasis. As a result, an urgent need has been raised to reach a full comprehension of chemoresistance-associated molecular pathways, thereby designing new therapy methods. Many of metastatic tumor masses are found to be related with a viral cause. Although combined therapy is perceived as the model role therapy in such cases, chemoresistant features, which is more common in viral carcinogenesis, often get into way of this kind of therapy, minimizing the chance of survival. Some investigations indicate that the infecting virus dominates other leading factors, i.e., genetic alternations and tumor microenvironment, in development of cancer cell chemoresistance. Herein, we have gathered the available evidence on the mechanisms under which oncogenic viruses cause drug-resistance in chemotherapy.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Hu K, Li J, Wu G, Zhou L, Wang X, Yan Y, Xu Z. The novel roles of virus infection-associated gene CDKN1A in chemoresistance and immune infiltration of glioblastoma. Aging (Albany NY) 2021; 13:6662-6680. [PMID: 33621203 PMCID: PMC7993694 DOI: 10.18632/aging.202519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Chemoresistance is a common limitation for successful treatment of glioblastoma multiforme (GBM). Recently, virus infections have been demonstrated to be associated with tumorigenesis and chemoresistance in tumors. However, the role of infection-related genes in GBM haven't been clearly demonstrated. Here, we explored the roles and mechanisms of human T-lymphotropic virus type-1 (HTLV-1) infections in tumorigenesis and chemoresistance in GBM. Four candidate genes, CDKN1A, MSX1, MYC and CHEK2, were identified to be the codifferentially expressed genes between three temozolomide (TMZ) chemotherapy datasets and one HTLV-1 infection gene set. Next, comprehensive bioinformatics data from several databases indicated that only CDKN1A was significantly upregulated in both GBM tissues and cells and showed the greatest prognostic value in GBM patients. Clinical data identified the correlations between CDKN1A expression and clinicopathological parameters of GBM patients. Moreover, CDKN1A was found to be involved in AKT-mediated TMZ resistance of glioma cells. In addition, KEGG analysis of CDKN1A-associated coexpression genes showed that CDKN1A was potentially involved in complement and coagulation cascades pathways in GBM. Finally, TISIDB database was used to investigate the role of CDKN1A in tumor-immune system interactions in GBM. These findings enhanced our understanding of the roles of CDKN1A in tumorigenesis and therapy response in GBM.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lei Zhou
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha 410008, Hunan, China
| | - Xiang Wang
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
7
|
Yoon JH, Min K, Lee SK. Epstein-Barr Virus miR-BART17-5p Promotes Migration and Anchorage-Independent Growth by Targeting Kruppel-Like Factor 2 in Gastric Cancer. Microorganisms 2020; 8:microorganisms8020258. [PMID: 32075248 PMCID: PMC7074886 DOI: 10.3390/microorganisms8020258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the global population and is associated with a variety of tumors including nasopharyngeal carcinoma, Hodgkin lymphoma, natural killer/T lymphoma, and gastric carcinoma. In EBV-associated gastric cancer (EBVaGC), highly expressed EBV BamHI A rightward transcripts (BART) miRNAs may contribute to tumorigenesis with limited viral antigens. Despite previous studies on the targets of BART miRNAs, the functions of all 44 BART miRNAs have not been fully clarified. Here, we used RNA sequencing data from the Cancer Genome Atlas to find genes with decreased expression in EBVaGC. Furthermore, we used AGS cells infected with EBV to determine whether expression was reduced by BART miRNA. We showed that the expression of Kruppel-like factor 2 (KLF2) is lower in AGS-EBV cells than in the AGS control. Using bioinformatics analysis, four BART miRNAs were selected to check whether they suppress KLF2 expression. We found that only miR-BART17-5p directly down-regulated KLF2 and promoted gastric carcinoma cell migration and anchorage-independent growth. Our data suggest that KLF2 functions as a tumor suppressor in EBVaGC and that miR-BART17-5p may be a valuable target for effective EBVaGC treatment.
Collapse
Affiliation(s)
| | | | - Suk Kyeong Lee
- Correspondence: ; Tel.: +82-2-2258-7480; Fax: +82-504-201-2396
| |
Collapse
|
8
|
Min K, Kim JY, Lee SK. Epstein-Barr virus miR-BART1-3p suppresses apoptosis and promotes migration of gastric carcinoma cells by targeting DAB2. Int J Biol Sci 2020; 16:694-707. [PMID: 32025216 PMCID: PMC6990914 DOI: 10.7150/ijbs.36595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
Although Epstein-Barr virus (EBV) is known to encode over 40 different miRNAs of its own, the roles of most EBV miRNAs remain unknown. Disabled homolog 2 (DAB2) is a putative tumor suppressor, but its role in gastric carcinoma (GC), especially in EBV-associated GC, needs to be clarified. Our qRT-PCR and mRNA microarray results showed that DAB2 expression was down-regulated in EBV-positive GC cells compared to EBV-negative cells. Four BART miRNAs that might target DAB2 were predicted, and we found, using a luciferase reporter assay, that miR-BART1-3p directly targeted the 3'-UTR of DAB2. The miR-BART1-3p transfection decreased DAB2 expression at both mRNA and protein levels, while transfection of an inhibitor of miR-BART1-3p, miR-BART1-3p(i), increased DAB2 expression. In addition, miR-BART1-3p as well as siDAB2 increased migration and decreased apoptosis. Meanwhile, miR-BART1-3p(i) or pcDNA3.1-DAB2 transfection decreased migration and increased apoptosis in EBV-infected GC cells. Furthermore, decreased migration by miR-BART1-3p(i) was abrogated by co-transfected siDAB2, while decreased migration by miR-BART1-3p(i) was further suppressed by a co-transfected DAB2 over-expression vector. Our data suggest that miR-BART1-3p plays an important role in the tumorigenesis of EBV-associated GC by directly targeting DAB2.
Collapse
Affiliation(s)
- Kyoungmi Min
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun Yeob Kim
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Mechanistic Insights into Chemoresistance Mediated by Oncogenic Viruses in Lymphomas. Viruses 2019; 11:v11121161. [PMID: 31888174 PMCID: PMC6950054 DOI: 10.3390/v11121161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Viral lymphomagenesis induced by infection with oncogenic viruses, such as Kaposi’s sarcoma associated herpesvirus (KSHV), Epstein–Barr virus (EBV) and human T-cell leukemia virus (HTLV-1), represents a group of aggressive malignancies with a diverse range of pathological features. Combined chemotherapy remains the standard of care for these virus-associated lymphomas; however, frequent chemoresistance is a barrier to achieving successful long-term disease-free survival. There is increasing evidence that indicates virus-associated lymphomas display more resistance to cytotoxic chemotherapeutic agents than that observed in solid tumors. Although the tumor microenvironment and genetic changes, such as key oncogene mutations, are closely related to chemoresistance, some studies demonstrate that the components of oncogenic viruses themselves play pivotal roles in the multidrug chemoresistance of lymphoma cells. In this review, we summarize recent advances in the understanding of the mechanisms through which oncogenic viruses mediate lymphoma cell chemoresistance, with a particular focus on KSHV and EBV, two major oncogenic viruses. We also discuss the current challenges to overcome these obstacles in the treatment of virus-associated lymphomas.
Collapse
|
10
|
Ohmura H, Ito M, Uchino K, Okada C, Tanishima S, Yamada Y, Momosaki S, Komoda M, Kuwayama M, Yamaguchi K, Okumura Y, Nakano M, Tsuchihashi K, Isobe T, Ariyama H, Kusaba H, Oda Y, Akashi K, Baba E. Methylation of drug resistance-related genes in chemotherapy-sensitive Epstein-Barr virus-associated gastric cancer. FEBS Open Bio 2019; 10:147-157. [PMID: 31736281 PMCID: PMC6943226 DOI: 10.1002/2211-5463.12765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Epstein–Barr virus (EBV)‐associated gastric cancer (GC) is associated with a high degree of DNA methylation. However, the association between chemotherapy susceptibility and tumor DNA methylation in advanced diseases remains unclear. The comprehensive DNA methylation status of GC cells obtained from an advanced EBV‐associated GC (EBVGC) case, in which complete response to S‐1 plus cisplatin chemotherapy was achieved, was analyzed using a DNA methylation microarray. We compared DNA methylation of GC cells with public data and identified genes with higher methylation in EBVGC cell lines than in normal gastric cells, and genes in which methylation was increased by EBV. Of these genes, ABCG2, AHNAK2, BCL2, FZD1, and TP73 are associated with published evidence for resistance to 5‐fluorouracil and cisplatin. Silencing of these genes may be associated with hypersensitivity to chemotherapy.
Collapse
Affiliation(s)
- Hirofumi Ohmura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mamoru Ito
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keita Uchino
- Department of Clinical Oncology, NTT Medical Center Tokyo, Japan
| | - Chihiro Okada
- Engineering Section Biomedical Informatics Development Department Kansai Division, Mitsubishi Space Software, Hyogo, Japan
| | - Shigeki Tanishima
- Engineering Section Biomedical Informatics Development Department Kansai Division, Mitsubishi Space Software, Hyogo, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiya Momosaki
- Department of Pathology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Masato Komoda
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Miyuki Kuwayama
- Department of Internal Medicine, Munakata Medical Association Hospital, Fukuoka, Japan
| | - Kyoko Yamaguchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuta Okumura
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Michitaka Nakano
- Department of Gastrointestinal and Medical Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kenji Tsuchihashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Taichi Isobe
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroshi Ariyama
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hitoshi Kusaba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
11
|
Shen CL, Huang WH, Hsu HJ, Yang JH, Peng CW. GAP31 from an ancient medicinal plant exhibits anti-viral activity through targeting to Epstein-Barr virus nuclear antigen 1. Antiviral Res 2019; 164:123-130. [PMID: 30817940 DOI: 10.1016/j.antiviral.2019.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/12/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
Abstract
Since it was discovered as the first human tumor virus in 1964, Epstein-Barr Virus (EBV) is now implicated in several types of malignancies. Accordingly, certain aspects of EBV pathobiology have shown promise in anti-cancer research in developing virus-targeting methods for EBV-associated cancers. The unique role of EBV nuclear antigen 1 (EBNA1) in triggering episome-dependent functions has made it as the only latent gene to be expressed in most EBV+ neoplasms. Dimeric EBNA1 binds to the replication origin (oriP) to display its biological impact on EBV-driven cell transformation and maintenance. Hence, EBNA1/oriP has been made an ideal drug target site for anti-EBV protocol development. GAP31 protein was originally isolated from the seeds of an ancient medicinal plant Gelonium multiflorum. Although GAP31 has been shown to exhibit both anti-viral and anti-tumor activity, current understanding of the mechanistic picture underlying GAP31 functioning is not clear. Herein, we identify the EBNA1 DNA-binding domain as a core for GAP31 binding by performing affinity pulldown assays. Recombinant GAP31 (rGAP31) was shown to impair EBNA1-induced dimerization; consequently, it abrogated both EBNA1/oriP-mediated binding and transcription. Importantly, the therapeutic effects of GAP31 showed its capability to abrogate EBV-driven cell transformation and proliferation, and EBV-dependent tumorigenesis in xenograft animal models. Notably, the EBNA1 binding-mutant rGAP31R166A/R169A simply exhibits defective phenotypes in the above-mentioned studies. Our data suggest rGAP31 is a potential anti-viral drug which can be applied to the development of therapeutic strategies against EBV-related malignancies.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Wei-Han Huang
- Department of Oncology and Hematology, Buddhist Hualien Tzu Chi General Hospital, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan
| | - Jen-Hone Yang
- College of Medicine, Tzu Chi University, Department of Dermatology, Buddhist Hualien Tzu Chi General Hospital, Hualien, Taiwan
| | - Chih-Wen Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Life Sciences, Tzu Chi University, Hualien, 97004, Taiwan.
| |
Collapse
|
12
|
Baek DW, Kang BW, Kim JG. The Predictive Value of Epstein-Barr Virus-Positivity in Patients Undergoing Gastrectomy Followed by Adjuvant Chemotherapy. Chonnam Med J 2018; 54:173-177. [PMID: 30288373 PMCID: PMC6165919 DOI: 10.4068/cmj.2018.54.3.173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
The present study evaluated the survival impact of standard adjuvant chemotherapy and prognostic differences between Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) and EBV-negative gastric cancer (EBVnGC). A total of 276 patients were enrolled according to the following criteria: 1) pathologically diagnosed with primary gastric adenocarcinoma, 2) test results from EBV-encoded RNA in situ hybridization, 3) stage II/III according to the 7th edition of UICC/AJCC staging system for gastric cancer, and 4) postoperative adjuvant chemotherapy. Fifty-nine (21.4%) and 217 (78.6%) patients exhibited EBVaGC and EBVnGC, respectively, while 129 (46.7%) patients were classified as stage II and 147 (53.3%) as stage III. As for adjuvant chemotherapy, 87 (31.5%) patients received capecitabine and oxaliplatin, while 189 (68.5%) received S-1 monotherapy. With a median follow-up duration of 21.3 (6.4-89.0) months, the estimated 3-year disease-free survival (DFS) and overall survival (OS) rates were 74.8% and 83.0%, respectively. In univariate analysis and multivariate analysis using a Cox proportional hazard model including age, gender, stage, Lauren classification, and the type of chemotherapy, EBV-positivity was not significantly associated with DFS (p-value= 0.630) regardless of the type of chemotherapy. Therefore, no association was found between EBV positivity and the survival outcomes in patients with curatively resected gastric cancer who received standard adjuvant chemotherapy.
Collapse
Affiliation(s)
- Dong Won Baek
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Kyungpook National University Cancer Research Institute, Daegu, Korea
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Kyungpook National University Cancer Research Institute, Daegu, Korea
| | - Jong Gwang Kim
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Kyungpook National University Cancer Research Institute, Daegu, Korea
| |
Collapse
|
13
|
Jeong I, Kang SK, Kwon WS, Kim HJ, Kim KH, Kim HM, Lee A, Lee SK, Bogenrieder T, Chung HC, Rha SY. Regulation of proliferation and invasion by the IGF signalling pathway in Epstein-Barr virus-positive gastric cancer. J Cell Mol Med 2018; 22:5899-5908. [PMID: 30247804 PMCID: PMC6237558 DOI: 10.1111/jcmm.13859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/07/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Several carcinomas including gastric cancer have been reported to contain Epstein-Barr virus (EBV) infection. EBV-associated gastric cancer (EBVaGC) is classified as one of four molecular subtypes of gastric cancer by The Cancer Genome Atlas (TCGA) group with increased immune-related signatures. Identification of EBV-dependent pathways with significant biological roles is needed for EBVaGC. To compare the biological changes between AGS gastric epithelial cells and EBV-infected AGS (AGS-EBV) cells, proliferation assay, CCK-8 assay, invasion assay, cell cycle analysis, RT-PCR, Western blot and ELISA were performed. BI836845, a humanized insulin-like growth factor (IGF) ligand-neutralizing antibody, was used for IGF-related signalling pathway inhibition. AGS-EBV cells showed slower proliferating rate and higher sensitivity to BI836845 compared to AGS cells. Moreover, invasiveness of AGS-EBV was increased than that of AGS, and BI836845 treatment significantly decreased the invasiveness of AGS-EBV. Although no apoptosis was detected, entry into the S phase of the cell cycle was delayed in BI836845-treated AGS-EBV cells. In conclusion, AGS-EBV cells seem to modulate their proliferation and invasion through the IGF signalling pathway. Inhibition of the IGF signalling pathway therefore could be a potential therapeutic strategy for EBVaGC.
Collapse
Affiliation(s)
- Inhye Jeong
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Kyoung Kang
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Sun Kwon
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jeong Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoo Hyun Kim
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Myong Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea
| | - Andre Lee
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Biological Sciences, Columbia University, New York, New York
| | - Suk Kyeong Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria.,Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Hyun Cheol Chung
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Young Rha
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Naseem M, Barzi A, Brezden-Masley C, Puccini A, Berger MD, Tokunaga R, Battaglin F, Soni S, McSkane M, Zhang W, Lenz HJ. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat Rev 2018; 66:15-22. [PMID: 29631196 DOI: 10.1016/j.ctrv.2018.03.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus associated gastric cancer (EBVaGC) comprises approximately 10% of gastric carcinomas. Multiple factors contribute to tumorigenesis, including EBV driven hypermethylation of tumor suppressor genes, inflammatory changes in gastric mucosa, host immune evasion by EBV and changes in cell cycle pathways. The unique molecular characteristics of EBVaGC, such as programmed death ligand 1 (PD-L1) overexpression, highlight the potential for using EBV as a biomarker for response to immunotherapy. Few studies have reported benefit from immunotherapy in EBV positive cancers, and clinical trials investigating the impact of checkpoint inhibitors in EBVaGC are currently underway. This review provides the most recent updates on molecular pathophysiology, epidemiology, clinical features and treatment advances pertaining to EBVaGC.
Collapse
Affiliation(s)
- Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA
| | - Afsaneh Barzi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA
| | - Christine Brezden-Masley
- Division of Hematology/Oncology, Department of Medicine, St. Michael's Hospital, University of Toronto, Canada
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA
| | - Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA; Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IRCCS, Padua, Italy
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
15
|
Su S, Zou Z, Chen F, Ding N, Du J, Shao J, Li L, Fu Y, Hu B, Yang Y, Sha H, Meng F, Wei J, Huang X, Liu B. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology 2016; 6:e1249558. [PMID: 28197365 DOI: 10.1080/2162402x.2016.1249558] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/01/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
The successful use of immune cell checkpoint inhibitors PD-1 and PD-L1, over the past 5 y has raised the concern of using immunotherapy to treat various cancers. Epstein-Barr virus-associated gastric cancer (EBVaGC) exhibits high infiltration of lymphocytes and high amplification of immune-related genes including PD-L1 as distinguished from Epstein-Barr virus-non-associated gastric cancer (EBVnGC). Here, we presume that this PD-1/PD-L1 pathway may hinder the efficacy of adoptive T cell therapy toward EBVaGC. These studies reveal possibility of generating PD-1-disrupted CTL by CRISPR-Cas9 system and demonstrate enhanced immune response of these PD-1-disrupted CTLs to the EBV-LMP2A antigen and superior cytotoxicity to the EBV-positive gastric cancer cell. In addition, when combined with low-dose radiotherapy, these PD-1-disrupted CTLs mediated an impressive antitumor effect in a xenograft mouse model of EBVaGC. Taken together, these studies illustrate PD-1/PD-L1-mediated immune tolerance of EBVaGC and provide a new strategy for targeting immune checkpoints to break the tolerance for the T cell-based adoptive therapy.
Collapse
Affiliation(s)
- Shu Su
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Naiqing Ding
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Jie Shao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Lin Li
- Department of Pathology of Drum Tower Hospital, Medical School of Nanjing University , Nanjing, China
| | - Yao Fu
- Department of Pathology of Drum Tower Hospital, Medical School of Nanjing University , Nanjing, China
| | - Bian Hu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice , Nanjing, China
| | - Yang Yang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Huizi Sha
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| |
Collapse
|
16
|
Epstein-Barr Virus MicroRNA miR-BART20-5p Suppresses Lytic Induction by Inhibiting BAD-Mediated caspase-3-Dependent Apoptosis. J Virol 2015; 90:1359-68. [PMID: 26581978 DOI: 10.1128/jvi.02794-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/08/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with a variety of tumor types. EBV can establish latency or undergo lytic replication in host cells. In general, EBV remains latent in tumors and expresses a limited repertoire of latent proteins to avoid host immune surveillance. When the lytic cycle is triggered by some as-yet-unknown form of stimulation, lytic gene expression and progeny virus production commence. Thus far, the exact mechanism of EBV latency maintenance and the in vivo triggering signal for lytic induction have yet to be elucidated. Previously, we have shown that the EBV microRNA miR-BART20-5p directly targets the immediate early genes BRLF1 and BZLF1 as well as Bcl-2-associated death promoter (BAD) in EBV-associated gastric carcinoma. In this study, we found that both mRNA and protein levels of BRLF1 and BZLF1 were suppressed in cells following BAD knockdown and increased after BAD overexpression. Progeny virus production was also downregulated by specific knockdown of BAD. Our results demonstrated that caspase-3-dependent apoptosis is a prerequisite for BAD-mediated EBV lytic cycle induction. Therefore, our data suggest that miR-BART20-5p plays an important role in latency maintenance and tumor persistence of EBV-associated gastric carcinoma by inhibiting BAD-mediated caspase-3-dependent apoptosis, which would trigger immediate early gene expression. IMPORTANCE EBV has an ability to remain latent in host cells, including EBV-associated tumor cells hiding from immune surveillance. However, the exact molecular mechanisms of EBV latency maintenance remain poorly understood. Here, we demonstrated that miR-BART20-5p inhibited the expression of EBV immediate early genes indirectly, by suppressing BAD-induced caspase-3-dependent apoptosis, in addition to directly, as we previously reported. Our study suggests that EBV-associated tumor cells might endure apoptotic stress to some extent and remain latent with the aid of miR-BART20-5p. Blocking the expression or function of BART20-5p may expedite EBV-associated tumor cell death via immune attack and apoptosis.
Collapse
|
17
|
Yanai H, Yahara N, Furuya T, Hayashi H, Murakami T, Shimokawa Y, Sugihara S. Long-Term Survival of Patient with Epstein-Barr Virus-Positive Gastric Cancer Treated with Chemotherapy: Case Report. J Gastrointest Cancer 2015; 47:107-10. [PMID: 25972063 DOI: 10.1007/s12029-015-9729-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hideo Yanai
- Department of Clinical Research, National Hospital Organization Kanmon Medical Center, 1-1 Sotoura, Shimonoseki, Yamaguchi, Japan.
| | - Noboru Yahara
- Department of Surgery, National Hospital Organization Kanmon Medical Center, Shimonoseki, Yamaguchi, Japan
| | - Takumi Furuya
- Department of Surgery, National Hospital Organization Kanmon Medical Center, Shimonoseki, Yamaguchi, Japan
| | - Hiroto Hayashi
- Department of Surgery, National Hospital Organization Kanmon Medical Center, Shimonoseki, Yamaguchi, Japan
| | - Tomoyuki Murakami
- Department of Pathology, National Hospital Organization Kanmon Medical Center, Shimonoseki, Yamaguchi, Japan
| | - Yuzo Shimokawa
- Department of Gastroenterology, Aso Iizuka Hospital, Fukuoka, Japan
| | - Shigenori Sugihara
- Department of Internal Medicine, Sugihara Internal Medicine & Digestive Disease Clinic, Shimonoseki, Japan
| |
Collapse
|
18
|
Kim H, Choi H, Lee SK. Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett 2014; 356:733-42. [PMID: 25449437 DOI: 10.1016/j.canlet.2014.10.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022]
Abstract
Although Epstein-Barr virus (EBV) BamHI A rightward transcript (BART) microRNAs (miRNAs) are ubiquitously expressed in EBV-associated tumors, the role of most BART miRNAs is unclear. In this study, we showed that Bcl-2-associated death promoter (BAD) expression was significantly lower in EBV-infected AGS-EBV cells than in EBV-negative AGS cells and investigated whether BART miRNAs target BAD. Using bioinformatics analysis, five BART miRNAs showing seed match with the 3' untranslated region (3'-UTR) of BAD were selected. Of these, only miR-BART20-5p reduced BAD expression when individually transfected into AGS cells. A luciferase assay revealed that miR-BART20-5p directly targets BAD. The expression of BAD mRNA and protein was decreased by miR-BART20-5p and increased by an inhibitor of miR-BART20-5p. PE-Annexin V staining and cell proliferation assays showed that miR-BART20-5p reduced apoptosis and enhanced cell growth. Furthermore, miR-BART20-5p increased chemoresistance to 5-fluorouracil and docetaxel. Our data suggest that miR-BART20-5p contributes to tumorigenesis of EBV-associated gastric carcinoma by directly targeting the 3'-UTR of BAD.
Collapse
Affiliation(s)
- Hyoji Kim
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, South Korea
| | - Hoyun Choi
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, South Korea
| | - Suk Kyeong Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, South Korea.
| |
Collapse
|
19
|
Yau TO, Tang CM, Yu J. Epigenetic dysregulation in Epstein-Barr virus-associated gastric carcinoma: disease and treatments. World J Gastroenterol 2014; 20:6448-6456. [PMID: 24914366 PMCID: PMC4047330 DOI: 10.3748/wjg.v20.i21.6448] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/16/2014] [Accepted: 03/12/2014] [Indexed: 02/06/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) comprises nearly 10% of gastric carcinoma cases worldwide. Recently, it was recognised to have unique clinicopathologic characteristics, including male predominance, lower rates of lymph node involvement, and better prognosis. EBVaGC is further characterised by abnormal hypermethylation of tumour suppressor gene promoter regions, causing down-regulation of their expression. In the present review, we critically discuss the role of EBV in gastric carcinogenesis, summarising the role of viral proteins and microRNAs with respect to aberrant methylation in EBVaGC. Given the role of epigenetic dysregulation in tumourigenesis, epigenetic modifiers may represent a novel therapeutic strategy.
Collapse
|
20
|
MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1. J Virol 2014; 88:9027-37. [PMID: 24899173 DOI: 10.1128/jvi.00721-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is a human herpesvirus associated with various tumors. Rather than going through the lytic cycle, EBV maintains latency by limiting the expression of viral genes in tumors. Viral microRNAs (miRNAs) of some herpesviruses have been reported to directly target immediate early genes and suppress lytic induction. In this study, we investigated whether BamHI-A rightward transcript (BART) miRNAs targeted two EBV immediate early genes, BZLF1 and BRLF1. Bioinformatic analysis predicted that 12 different BART miRNAs would target BRLF1. Of these, the results of a luciferase reporter assay indicated that only one interacted with the 3' untranslated region (UTR) of BRLF1: miR-BART20-5p. miR-BART20-5p's effect on gene expression involved two putative seed match sites in the BRLF1 3' UTR, but a mutant version of the miRNA, miR-BART20-5pm, had no effect on expression. As expected from the fact that the entire 3' UTR of BZLF1 resides within the 3' UTR of BRLF1, miR-BART20-5p interacted with the 3' UTR of BZLF1 as well. BZLF1 and BRLF1 mRNA and protein expression was suppressed in cells of an AGS cell line infected with the recombinant Akata strain of EBV (AGS-EBV) transfected with a miR-BART20-5p mimic. The expression of various EBV early proteins was also suppressed by the miR-BART20-5p mimic. In contrast, BZLF1 and BRLF1 expression in AGS-EBV cells transfected with a miR-BART20-5p inhibitor was enhanced. Furthermore, progeny virus production was suppressed by the miR-BART20-5p mimic and enhanced by the miR-BART20-5p inhibitor in AGS-EBV cells induced for the lytic cycle. Our data suggest that miR-BART20-5p plays a key role in latency maintenance in EBV-associated tumors by directly targeting immediate early genes. IMPORTANCE Herpesviruses maintain latency using various mechanisms and establish lifelong infection in the host. From time to time, herpesviruses are reactivated and express immediate early genes which trigger a lytic cascade, leading to the production of progeny viruses. Recently, some herpesviruses have been shown to use their own microRNAs (miRNAs) to downregulate immediate early genes to inhibit the lytic cycle. This study presents evidence that EBV also downregulates two immediate early genes by miR-BART20-5p to suppress the lytic cycle and progeny virus production. Overall, this is the first study to report the direct regulation of EBV immediate early genes by an EBV miRNA, implying its likely importance in latency maintenance in EBV-associated tumors.
Collapse
|
21
|
Smets F, Sokal EM. Prevention and treatment for Epstein-Barr virus infection and related cancers. Recent Results Cancer Res 2014; 193:173-190. [PMID: 24008299 DOI: 10.1007/978-3-642-38965-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Epstein-Barr virus (EBV) was the first herpes virus described as being oncogenic in humans. EBV infection is implicated in post-transplant lymphoproliferative diseases (PTLD) and several other cancers in non-immunocompromised patients, with more than 200,000 new cases per year. While prevention of PTLD is improving, mainly based on EBV monitoring and preemptive tapering of immunosuppression, early diagnosis remains the best current option for the other malignancies. Significant progress has been achieved in treatment, with decreased mortality and morbidity, but some challenges are still to face, especially for the more aggressive diseases. Possible prevention by EBV vaccination would be a more global approach of this public health problem, but further active research is needed before this goal could be reached.
Collapse
Affiliation(s)
- Françoise Smets
- Université Catholique de Louvain, Cliniques Universitaires St-Luc, Avenue Hippocrate 10/1301, 1200, Brussels, Belgium,
| | | |
Collapse
|
22
|
Guo H, Wang T, Su HX. Epstein-Barr virus and gastric cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:1616-1622. [DOI: 10.11569/wcjd.v21.i17.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer ranks second among malignancies in terms of global incidence. Epstein-Barrvirus (EBV)-associated gastric carcinoma (EBVaGC) is a recently recognized entity, which is defined by the presence of EBV in gastric carcinoma cells. EBVaGC represents about 10% of gastric carcinoma cases worldwide. It is estimated that there are over 80000 new EBVaGC cases in the world annually. EBVaGC shows some distinct clinical and pathological characteristics. The observation that EBV-encoded small RNA is expressed in cancer cells but not in surrounding normal epithelial cells strongly suggests that EBV plays an etiological role in gastric carcinogenesis. In this review, we discuss the relationship between EBV and gastric carcinogenesis.
Collapse
|
23
|
Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol 2013; 87:8135-44. [PMID: 23678170 DOI: 10.1128/jvi.03159-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr Virus (EBV) generates a variety of viral microRNAs (miRNAs) by processing the BHRF1 and BamHI A rightward (BART) transcripts. BART miRNAs are expressed in all cells latently infected with EBV, but the functions of most BART miRNAs remain unknown. The results of a cell proliferation assay revealed that miR-BART15-3p inhibited cell proliferation. Fluorescence-activated cell sorting following staining with annexin V or propidium iodide showed that miR-BART15-3p promoted apoptosis. Furthermore, the inhibitor for miR-BART15-3p increased cell growth and reduced apoptosis in EBV-infected cells. Using bioinformatic analyses, we predicted that miR-BART15-3p may target the antiapoptotic B-cell lymphoma 2 (BCL2), BCL2L2, DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 (DDX42), and baculovirus inhibitor of apoptosis repeat-containing ubiquitin-conjugating enzyme (BRUCE) mRNAs. The luciferase reporter assay showed that only the 3' untranslated region (UTR) of BRUCE was affected by miR-BART15-3p. Two putative seed-matched sites for miR-BART15-3p were evident on the BRUCE 3' UTR. The results of a mutation study indicated that miR-BART15-3p hybridized only with the first seed-matched site on the BRUCE 3' UTR. miR-BART15-3p downregulated the BRUCE protein in EBV-negative cells, while the inhibitor for miR-BART15-3p upregulated the BRUCE protein in EBV-infected cells without affecting the BRUCE mRNA level. miR-BART15-3p was secreted from EBV-infected gastric carcinoma cells, and the level of miR-BART15-3p was 2- to 16-fold higher in exosomes than in the corresponding cells. Our data suggest that miR-BART15-3p can induce apoptosis partially by inhibiting the translation of the apoptosis inhibitor BRUCE. Further study is warranted to understand the role of miR-BART15-3p in the EBV life cycle.
Collapse
|
24
|
Li B, Wang L, Chi B. Upregulation of periostin prevents P53-mediated apoptosis in SGC-7901 gastric cancer cells. Mol Biol Rep 2012; 40:1677-83. [PMID: 23076534 DOI: 10.1007/s11033-012-2218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/09/2012] [Indexed: 12/11/2022]
Abstract
Periostin is frequently upregulated in human cancers including gastric cancer and implicated in cancer cell proliferation, invasion, and epithelial-mesenchymal transition. This study was undertaken to investigate the effects of periostin overexpression on the chemosensitivity of gastric cancer cells. We constructed a stable cell line overexpressing periostin in SGC-7901 human gastric cancer cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that periostin had no influence on the proliferation of SGC-7901 cells. Compared to empty vector-transfected cells, overexpression of periostin rendered SGC-7901 cells more resistant to cisplatin or 5-fluorouracil (5-FU)-induced apoptosis, accompanying with less release of cytochrome c from mitochondria and diminished cleavage of caspase-3 and poly (ADP-ribose) polymerase. Periostin-overexpressing cells treated with cisplatin or 5-FU showed significantly (p < 0.05) decreased expression of Bax and p53 proteins and increased expression of Bcl-2 protein, when compared to drug-treated mock counterparts. Restoration of p53 expression by delivering wild-type p53 gene resulted in a marked increase in drug-induced apoptosis in periostin-overexpressing SGC-7901 cells. Periostin overexpression elevated the phosphorylation of Akt. Pretreatment of periostin-overexpressing cells with an Akt inhibitor, MK-2206, partially rescued periostin-mediated inhibition of p53 expression and drug resistance. Taken together, our data indicate that periostin confers protection against cisplatin or 5-FU-induced apoptosis in SGC-7901 cells, likely through modulating the Akt/p53 pathway, and thus represents a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Bin Li
- Department of Gastroenterology, The First Affiliated Hospital, Jilin University, Jilin, 1300112, China
| | | | | |
Collapse
|
25
|
The association of statins and taxanes: an efficient combination trigger of cancer cell apoptosis. Br J Cancer 2012; 106:685-92. [PMID: 22294184 PMCID: PMC3322964 DOI: 10.1038/bjc.2012.6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Cancer cell killing might be achieved by the combined use of available drugs. Statins are major anti-hypercholesterolemia drugs, which also trigger apoptosis of many cancer cell types, while docetaxel is a potent microtubule-stabilising agent. Methods: Here, we looked at the combined effects of lovastatin and docetaxel in cancer cells. Results: Whole transcriptome microarrays in HGT-1 gastric cancer cells demonstrated that lovastatin strongly suppressed expression of genes involved in cell division, while docetaxel had very little transcriptional effects. Both drugs triggered apoptosis, and their combination was more than additive. A marked rise in the cell-cycle inhibitor p21, together with reduction of aurora kinases A and B, cyclins B1 and D1 proteins was induced by lovastatin alone or in combination with docetaxel. The drug treatments induced the proteolytic cleavage of procaspase-3, a drop of the anti-apoptotic Mcl-1 protein, Poly-ADP-Ribose Polymerase and Bax. Strikingly, docetaxel-resistant HGT-1 cell derivatives overexpressing the MDR-1 gene were much more sensitive to lovastatin than docetaxel-sensitive cells. Conclusion: These results suggest that the association of lovastatin and docetaxel, or lovastatin alone, shows promise as plausible anticancer strategies, either as a direct therapeutic approach or following acquired P-glycoprotein-dependent resistance.
Collapse
|
26
|
Lee EK, Chae JH, Kang MS. Nuclear factor-κB2 represses Sp1-mediated transcription at the CD99 promoter. Mol Cells 2011; 32:555-60. [PMID: 22083306 PMCID: PMC3887681 DOI: 10.1007/s10059-011-0177-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022] Open
Abstract
Downregulation of the CD99 antigen on the surface of Hodgkin's lymphoma (HL) cells via EBV LMP1-mediated NF-κB suppression of Sp1 transcriptional activity is known to be associated with the appearance of pathogenic Reed-Sternberg cells. Here, we show that in addition, EBV LMP1 heterologous NF-κB activators such as CD30 and CD40 repress the CD99 promoter, which contains multiple Sp1-binding sites but no NF-κB binding sites. In addition, NF-κB-inducing kinase (NIK) repressed the CD99 promoter while NIK kinase mutants and JNK inhibitory protein failed to do so. Of the NF-κB subunits, NF-κB2 (p52) alone or in combination with other Rel subunits consistently inhibited the CD99, while NF-κB1 (p50) showed a marginal repressive effect. Furthermore, while transfection of LMP1 repressed the CD99 promoter in wild-type or NF-κB1 deficient MEFs, the same repression was not observed in NF-κB2 (p52)-deficient MEFs, indicating that NF-κB2 (p52) is required for LMP1-mediated repression of the CD99 promoter. Consistently, basal activity of the CD99 promoter was significantly higher in IKKα(-/-) and IKKβ(-/-) MEFs, but not in IKKΓ(-/-) MEFs compared to the wild-type control MEFs. Sp1-binding sites were directly used in the repression, because a synthetic Sp1 reporter with 10 Sp1-binding sites from the CD99 promoter was repressed by LMP1 or p52 transfection. These data indicate that LMP1-mediated NF-κB2 exhibits the major inhibitory role in the transcription at the CD99 promoter.
Collapse
Affiliation(s)
- Eun Kyung Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
- These authors contributed equally to this study
| | - Ji Hye Chae
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
- These authors contributed equally to this study
| | - Myung-Soo Kang
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
- Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|