1
|
Liu S, Guo T, Hu J, Huang W, She P, Wu Y. HIV-1-related factors interact with p53 to influence cellular processes. AIDS Res Ther 2023; 20:66. [PMID: 37691100 PMCID: PMC10493029 DOI: 10.1186/s12981-023-00563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the primary epidemic strain in China. Its genome contains two regulatory genes (tat and rev), three structural genes (gag, pol, and env), and four accessory genes (nef, vpr, vpu, and vif). Long terminal repeats (LTRs) in thegenome regulate integration, duplication, and expression of viral gene. The permissibility of HIV-1 infection hinges on the host cell cycle status. HIV-1 replicates by exploiting various cellular processes via upregulation or downregulation of specific cellular proteins that also control viral pathogenesis. For example, HIV-1 regulates the life cycle of p53, which in turn contributes significantly to HIV-1 pathogenesis. In this article, we review the interaction between HIV-1-associated factors and p53, providing information on their regulatory and molecular mechanisms, hinting possible directions for further research.
Collapse
Affiliation(s)
- Shanling Liu
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China
| | - Ting Guo
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China
| | - Jinwei Hu
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China
| | - Weiliang Huang
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China
| | - Pengfei She
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Wu
- Department of Laboratory Medicine, The First Hospital of Changsha, 311 Yingpan Road, Changsha, 410005, Hunan, China.
| |
Collapse
|
2
|
Li M, Li J, Guo X, Pan H, Zhou Q. Absence of HTATIP2 Expression in A549 Lung Adenocarcinoma Cells Promotes Tumor Plasticity in Response to Hypoxic Stress. Cancers (Basel) 2020; 12:cancers12061538. [PMID: 32545251 PMCID: PMC7352940 DOI: 10.3390/cancers12061538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
HIV-1 Tat Interactive Protein 2 (HTATIP2) is a tumor suppressor, of which reduced or absent expression is associated with increased susceptibility to tumorigenesis and enhanced tumor invasion and metastasis. However, whether the absent expression of HTATIP2 is a tumor-promoting factor that acts through improving tumor adaptation to hypoxia is unclear. Here, we established a stable HTATIP2-knockdown A549 human lung adenocarcinoma cell line (A549shHTATIP2) using lentiviral-delivered HTATIP2-targeting short hairpin RNA (shRNA), employed a double subcutaneous xenograft model and incorporated photoacoustic imaging and metabolomics approaches to elucidate the impact of the absent HTATIP2 expression on tumor response to hypoxic stress. Results from the in vivo study showed that A549shHTATIP2 tumors exhibited accelerated growth but decreased intratumoral oxygenation and angiogenesis and reduced sensitivity to sorafenib treatment as compared with their parental counterparts. Moreover, results of the immunoblot and real-time PCR analyses revealed that the HIF2α protein and mRNA levels in vehicle-treated A549shHTATIP2 tumors were significantly increased (p < 0.01 compared with the parental control tumors). Despite the strong HIF2α-c-Myc protein interaction indicated by our co-immunoprecipitation data, the increase in the c-Myc protein and mRNA levels was not significant in the A549shHTATIP2 tumors. Nonetheless, MCL-1 and β-catenin protein levels in A549shHTATIP2 tumors were significantly increased (p < 0.05 compared with the parental control tumors), suggesting an enhanced β-catenin/c-Myc/MCL-1 pathway in the absence of HTATIP2 expression. The finding of significantly decreased E-cadherin (p < 0.01 compared with vehicle-treated A549shHTATIP2 tumors) and increased vimentin (p < 0.05 compared with sorafenib-treated A549 tumors) protein levels in A549shHTATIP2 tumors implicates that the absence of HTATIP2 expression increases the susceptibility of A549 tumors to sorafenib-activated epithelial-mesenchymal transition (EMT) process. Comparison of the metabolomic profiles between A549 and A549shHTATIP2 tumors demonstrated that the absence of HTATIP2 expression resulted in increased tumor metabolic plasticity that enabled tumor cells to exploit alternative metabolic pathways for survival and proliferation rather than relying on glutamine and fatty acids as a carbon source to replenish TCA cycle intermediates. Our data suggest a mechanism by which the absent HTATIP2 expression modulates tumor adaptation to hypoxia and promotes an aggressive tumor phenotype by enhancing the HIF2α-regulated β-catenin/c-Myc/MCL-1 signaling, increasing the susceptibility of tumors to sorafenib treatment-activated EMT process, and improving tumor metabolic plasticity.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.L.); (X.G.)
| | - Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Xiaofang Guo
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.L.); (X.G.)
| | - Hua Pan
- Division of Cardiovascular Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Qingyu Zhou
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.L.); (X.G.)
- Correspondence: ; Tel.: +1-813-974-7081
| |
Collapse
|
3
|
Theodorou A, Phylactides M, Katsantoni E, Vougas K, Garbis SD, Fanis P, Sitarou M, Thein SL, Kleanthous M. Proteomic Studies for the Investigation of γ-Globin Induction by Decitabine in Human Primary Erythroid Progenitor Cultures. J Clin Med 2020; 9:jcm9010134. [PMID: 31947809 PMCID: PMC7019605 DOI: 10.3390/jcm9010134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
Reactivation of γ-globin is considered a promising approach for the treatment of β-thalassemia and sickle cell disease. Therapeutic induction of γ-globin expression, however, is fraught with lack of suitable therapeutic targets. The aim of this study was to investigate the effects that treatment with decitabine has on the proteome of human primary erythroid cells from healthy and thalassemic volunteers, as a means of identifying new potential pharmacological targets. Decitabine is a known γ-globin inducer, which is not, however, safe enough for clinical use. A proteomic approach utilizing isobaric tags for relative and absolute quantitation (iTRAQ) analysis, in combination with high-pH reverse phase peptide fractionation followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), was employed to investigate the effects of decitabine treatment. Bioinformatics analysis making use of the Database for Annotation, Visualization and Integrated Discovery (DAVID) was employed for functional annotation of the 192 differentially expressed proteins identified. The data are available via ProteomeXchange with identifier PXD006889. The proteins fall into various biological pathways, such as the NF-κB signaling pathway, and into many functional categories including regulation of cell proliferation, transcription factor and DNA binding, protein stabilization, chromatin modification and organization, and oxidative stress proteins.
Collapse
Affiliation(s)
- Andria Theodorou
- Molecular Genetics Thalassaemic Department, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Marios Phylactides
- Molecular Genetics Thalassaemic Department, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Correspondence: ; Tel.: +357-22-392657
| | - Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Kostas Vougas
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Spyros D. Garbis
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Division for Cancer Sciences, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, UK
- Centre for Proteomics Research, Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Pavlos Fanis
- Molecular Genetics Thalassaemic Department, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
- Molecular Genetics Function and Therapy Department, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Maria Sitarou
- Thalassaemia Centre, Larnaca General Hospital, Larnaca 6043, Cyprus
| | - Swee Lay Thein
- Sickle cell branch, National Heart, Lung and Blood Institute, The National Institutes of Health, Bethesda, MD 20814, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemic Department, Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
4
|
Chen CJ, Chou PA, Huang MS, Liu YP. Low TIP30 Protein Expression is Associated with a High Risk of Metastasis and Poor Prognosis for Non-Small-Cell Lung Cancer. J Clin Med 2019; 8:jcm8010083. [PMID: 30642057 PMCID: PMC6352086 DOI: 10.3390/jcm8010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/10/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a deadly malignancy with a high prevalence worldwide. A reliable biomarker that can predict the prognosis is required to determine the therapeutic strategy. TIP30 was first identified as a tumor suppressor. A number of mechanistic studies indicated that the downregulation of TIP30 enhances the stemness, migration and survival of NSCLC cells. However, the clinical relevance of TIP30 for the prognosis of NSCLC is unknown. From a meta-analysis of public microarray datasets, we showed the upregulation of TIP30 mRNA expression was associated with worse overall survival of NSCLC patients, which contradicted the tumor suppressive role of TIP30. It is worth noting that the TIP30 mRNA expression was not correlated with its protein expression in 15 NSCLC cell lines. The results from the immunohistochemistry of a tissue microarray showed the downregulation of the TIP30 protein expression was associated with a higher risk of metastasis. In addition, the decrease in TIP30 protein was correlated with worse overall and progression-free survival of the NSCLC patients. Multivariate analysis suggested the loss of TIP30 protein was an independent factor to predict the poor prognosis of NSCLC. Our data indicated that TIP30 protein, not mRNA, would be a potential prognostic biomarker of NSCLC.
Collapse
Affiliation(s)
- Chao-Ju Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Po-An Chou
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung 807, Taiwan.
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung 807, Taiwan.
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 807, Taiwan.
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
5
|
Xu T, Jin Z, Yuan Y, Zheng H, Li C, Hou W, Guo Q, Hua B. Tat-Interacting Protein 30 (TIP30) Expression Serves as a New Biomarker for Tumor Prognosis: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0168408. [PMID: 28036326 PMCID: PMC5201241 DOI: 10.1371/journal.pone.0168408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tat-interacting protein 30 (TIP30) is a tumor suppressor protein that has been found to be expressed in a wide variety of tumor tissues. TIP30 is involved in the control of cell apoptosis, growth, metastasis, angiogenesis, DNA repair, and tumor cell metabolism. The methylation of the TIP30 promoter is also associated with tumor prognosis. To evaluate this topic further, we conducted a systematic meta-analysis to explore the clinicopathological and prognostic significance of TIP30 for tumor patients. METHODS We searched PubMed and EMBASE for eligible studies. We manually searched for printed journals and relevant textbooks. Subgroup analyses were performed based on the region, manuscript quality, methods of vasculogenic mimicry identification, pathology, and number of patients. RESULTS Fourteen studies with 1705 patients were included in this meta-analysis. A significant association was observed between high expression of TIP30 in patients with cancer with a good overall survival (hazard ratio = 0.53, 95% confidence interval: 0.41-0.69), and good recurrence-free survival or disease free survival (hazard ratio = 0.49, 95% confidence interval: 0.37-0.66). Lack of expression of TIP30 had an association with lymph node metastasis (odds ratio = 3.90, 95% confidence interval: 2.21-6.89) and high tumor node metastasis clinical stage (odds ratio = 2.10, 95% confidence interval: 1.68-2.62). The methylation of the TIP30 promoter did not significantly influence the overall survival (hazard ratio = 0.99, 95% confidence interval: 0.88-1.13) or disease free survival (hazard ratio = 0.62, 95% confidence interval: 0.19-2.02). CONCLUSIONS TIP30 expression is associated with a good prognosis in patients with tumors. Clinical studies with large samples are needed worldwide and standardized protocols should be adopted in the future to achieve a better understanding of the relationship between tumor prognosis and TIP30.
Collapse
Affiliation(s)
- Tao Xu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Haidian District, Beijing, China
| | - Zhichao Jin
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Yuan Yuan
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Conghuang Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Wei Hou
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
| | - Qiujun Guo
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, China
- * E-mail: (BH); (QG)
| | - Baojin Hua
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Xicheng District, Beijing, China
- * E-mail: (BH); (QG)
| |
Collapse
|
6
|
Abstract
TIP30/CC3 was first identified and characterized as a "candidate" tumor-suppressor gene in 1997. Recently, the TIP30 tumor-suppressor status has been fully established since several studies have described that TIP30 protein expression is frequently downregulated in diverse types of human tumors, and the downregulation is often associated with tumor progression. TIP30 is involved in the control of cell apoptosis, growth, metastasis, angiogenesis, DNA repair, and tumor cell metabolism. Moreover, TIP30(-/-) mice spontaneously develop hepatocellular carcinoma and other tumors at a higher incidence than that of wild-type mice. In this review, we provide an overview of current knowledge concerning the role of TIP30 in tumor development and progression. To our knowledge, this is the first review about the role of novel tumor-suppressor gene TIP30 in tumor development and progression.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
7
|
Ma Z, Wang Y, Piao T, Li Z, Zhang H, Liu Z, Liu J. The tumor suppressor role of PAQR3 in osteosarcoma. Tumour Biol 2014; 36:3319-24. [DOI: 10.1007/s13277-014-2964-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/08/2014] [Indexed: 12/27/2022] Open
|
8
|
Asmar F, Punj V, Christensen J, Pedersen MT, Pedersen A, Nielsen AB, Hother C, Ralfkiaer U, Brown P, Ralfkiaer E, Helin K, Grønbæk K. Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma. Haematologica 2013; 98:1912-20. [PMID: 23831920 DOI: 10.3324/haematol.2013.088740] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery that the Ten-Eleven Translocation (TET) hydroxylases cause DNA demethylation has fundamentally changed the notion of how DNA methylation is regulated. Clonal analysis of the hematopoetic stem cell compartment suggests that TET2 mutations can be early events in hematologic cancers and recent investigations have shown TET2 mutations in diffuse large B-cell lymphoma. However, the detection rates and the types of TET2 mutations vary, and the relation to global methylation patterns has not been investigated. Here, we show TET2 mutations in 12 of 100 diffuse large B-cell lymphomas with 7% carrying loss-of-function and 5% carrying missense mutations. Genome-wide methylation profiling using 450K Illumina arrays identified 315 differentially methylated genes between TET2 mutated and TET2 wild-type cases. TET2 mutations are primarily associated with hypermethylation within CpG islands (70%; P<0.0001), and at CpG-rich promoters (60%; P<0.0001) of genes involved in hematopoietic differentiation and cellular development. Hypermethylated loci in TET2 mutated samples overlap with the bivalent (H3K27me3/H3K4me3) silencing mark in human embryonic stem cells (P=1.5×10(-30)). Surprisingly, gene expression profiling showed that only 11% of the hypermethylated genes were down-regulated, among which there were several genes previously suggested to be tumor suppressors. A meta-analysis suggested that the 35 hypermethylated and down-regulated genes are associated with the activated B-cell-like type of diffuse large B-cell lymphoma in other studies. In conclusion, our data suggest that TET2 mutations may cause aberrant methylation mainly of genes involved in hematopoietic development, which are silenced but poised for activation in human embryonic stem cells.
Collapse
|