1
|
Cheng X, Shen S. Transcriptional reprogramming in oral squamous cell carcinoma. Sci Rep 2025; 15:18210. [PMID: 40414942 DOI: 10.1038/s41598-025-01364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 05/06/2025] [Indexed: 05/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent form of cancer globally. This disease is characterized by its complex genetic underpinnings, involving the intricate regulation of multiple genes. Genetic factors influence cellular processes such as growth, differentiation, and apoptosis of oral mucosal cells, thereby promoting or inhibiting tumor formation and progression. Furthermore, environmental factors-including smoking, alcohol consumption, and human papillomavirus (HPV) infection-can significantly increase the risk of developing OSCC. These external influences can impact the disease in several ways. Delayed clinical detection and the absence of specific biomarkers, coupled with expensive treatment alternatives, contribute to poor prognoses among OSCC patients. Thus, identifying OSCC biomarkers has become imperative. This study investigates publicly accessible sequencing data of oral mucosal tissues from four distinct datasets-GSE23558, GSE30784, GSE36090, and GSE51010-archived in the Gene Expression Omnibus (GEO) database. By analyzing these datasets, which encompass a range of genetic profiles and experimental conditions, the study seeks to uncover critical biomarkers and molecular pathways involved in the early stages of OSCC development. The primary objective is to identify pivotal genes linked to the onset of OSCC. The findings provide preliminary evidence for therapeutic targets in OSCC and may serve as a robust foundation for subsequent biological research endeavors.
Collapse
Affiliation(s)
- Xianyang Cheng
- School of Stomatology, Jinan University, Guangzhou, 510000, China
| | - Shan Shen
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Wang Z, Zhang L, Tang F, Yang Z, Wang M, Jia J, Wang D, Yang L, Zhong S, Yuan G. Transcriptome analysis of peripheral blood mononuclear cells in patients with type 1 diabetes mellitus. Endocrine 2022; 78:270-279. [PMID: 35976509 DOI: 10.1007/s12020-022-03163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease characterized by the destruction of pancreatic β cells. The goal of this study was to explore potential biological biomarkers for T1DM. METHODS Two microarray datasets (GSE55098 and GSE156035) about human peripheral blood mononuclear cells (PBMCs) were systematically extracted from the Gene Expression Omnibus (GEO) database. Common genes were identified from the perspective of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) respectively, and hub genes were identified by least absolute shrinkage and selection operator (LASSO) analysis. We also observed the expression of these hub genes in some common autoimmune diseases and predicted transcription factors (TFs) that might be associated with these genes. RESULTS Seven hub genes (DDIT4, ESCO2, SH3BP4, PRICKLE1, EPM2AIP1, KCNJ15 and GRM8) were finally identified. Receiver operating characteristic (ROC) analysis showed that the high expression of these genes could well predict the occurrence of T1DM. Gene set enrichment analysis (GSEA) suggested that most of these hub genes may be mainly involved in the changes of biological functions such as inflammation, infection, immunity, cancer, and apoptosis. Further, compared with the control group, the expression levels of these hub genes also changed in some other autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary biliary cholangitis (PBC), etc., indicating that they might be the common targets of these autoimmune diseases. CONCLUSIONS The present study identified novel genes associated with T1DM from the PBMCs perspective that might provide new ideas for the early diagnosis, monitoring, evaluation, and prediction of T1DM.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Li Zhang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Fengyan Tang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Zhongming Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Mengzhu Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Jue Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Shao Zhong
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China.
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|
3
|
MicroRNA and mRNA Expression Changes in Glioblastoma Cells Cultivated under Conditions of Neurosphere Formation. Curr Issues Mol Biol 2022; 44:5294-5311. [PMID: 36354672 PMCID: PMC9688839 DOI: 10.3390/cimb44110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. The study of the pathogenesis of GBM, as well as the development of targeted oncolytic drugs, require the use of actual cell models, in particular, the use of 3D cultures or neurospheres (NS). During the formation of NS, the adaptive molecular landscape of the transcriptome, which includes various regulatory RNAs, changes. The aim of this study was to reveal changes in the expression of microRNAs (miRNAs) and their target mRNAs in GBM cells under conditions of NS formation. Neurospheres were obtained from both immortalized U87 MG and patient-derived BR3 GBM cell cultures. Next generation sequencing analysis of small and long RNAs of adherent and NS cultures of GBM cells was carried out. It was found that the formation of NS proceeds with an increase in the level of seven and a decrease in the level of 11 miRNAs common to U87 MG and BR3, as well as an increase in the level of 38 and a decrease in the level of 12 mRNA/lncRNA. Upregulation of miRNAs hsa-miR: -139-5p; -148a-3p; -192-5p; -218-5p; -34a-5p; and -381-3p are accompanied by decreased levels of their target mRNAs: RTN4, FLNA, SH3BP4, DNPEP, ETS2, MICALL1, and GREM1. Downregulation of hsa-miR: -130b-5p, -25-5p, -335-3p and -339-5p occurs with increased levels of mRNA-targets BDKRB2, SPRY4, ERRFI1 and TGM2. The involvement of SPRY4, ERRFI1, and MICALL1 mRNAs in the regulation of EGFR/FGFR signaling highlights the role of hsa-miR: -130b-5p, -25-5p, -335-3p, and -34a-5p not only in the formation of NS, but also in the regulation of malignant growth and invasion of GBM. Our data provide the basis for the development of new approaches to the diagnosis and treatment of GBM.
Collapse
|
4
|
Lu X, Abdalla IM, Nazar M, Fan Y, Zhang Z, Wu X, Xu T, Yang Z. Genome-Wide Association Study on Reproduction-Related Body-Shape Traits of Chinese Holstein Cows. Animals (Basel) 2021; 11:1927. [PMID: 34203505 PMCID: PMC8300307 DOI: 10.3390/ani11071927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Reproduction is an important production activity for dairy cows, and their reproductive performance can directly affect the level of farmers' income. To better understand the genomic regions and biological pathways of reproduction-related traits of dairy cows, in the present study, three body shape traits-Loin Strength (LS), Rump Angle (RA), and Pin Width (PW)-were selected as indicators of the reproductive ability of cows, and we conducted genome-wide association analyses on them. The heritability of these three traits was medium, ranging from 0.20 to 0.38. A total of 11 significant single-nucleotide polymorphisms (SNPs) were detected associated with these three traits. Bioinformatics analysis was performed on genes close to the significant SNPs (within 200 Kb) of LS, RA, and PW, and we found that these genes were totally enriched in 20 gene ontology terms and six KEGG signaling pathways. Finally, the five genes CDH12, TARP, PCDH9, DTHD1, and ARAP2 were selected as candidate genes that might affect LS. The six genes LOC781835, FSTL4, ATG4C, SH3BP4, DMP1, and DSPP were selected as candidate genes that might affect RA. The five genes USP6NL, CNTN3, LOC101907665, UPF2, and ECHDC3 were selected as candidate genes that might affect the PW of Chinese Holstein cows. Our results could provide useful biological information for the improvement of body shape traits and contribute to the genomic selection of Chinese Holstein cows.
Collapse
Affiliation(s)
- Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Ismail Mohamed Abdalla
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Zhipeng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Xinyue Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225002, China; (X.L.); (I.M.A.); (M.N.); (Y.F.); (Z.Z.); (X.W.)
| |
Collapse
|
5
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
6
|
Luo C, Zheng N, Zhao S, Wang J. Sestrin2 Negatively Regulates Casein Synthesis through the SH3BP4-mTORC1 Pathway in Response to AA Depletion or Supplementation in Cow Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4849-4859. [PMID: 30969118 DOI: 10.1021/acs.jafc.9b00716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sestrin2 (SESN2) negatively regulates the mammalian target of rapamycin complex 1 (mTORC1) pathway and casein synthesis in response to amino acid (AA) depletion in cow mammary epithelial cells (CMECs); however, the underlying mechanism is unclear. In the current study, the regulation of SESN2 on AA-mediated β-casein (CSN2) synthesis in CMECs and its mechanism were investigated. Overexpression and silencing of SESN2 demonstrated that SESN2 negatively regulated AA-mediated expression of CSN2 and mTORC1 pathway. Co-immunoprecipitation analysis showed that SESN2 interacted with SH3 domain-binding protein 4 (SH3BP4). Overexpression and silencing of SH3BP4 demonstrated that SH3BP4 negatively regulated AA-mediated expression of CSN2 and mTORC1 pathway and that SESN2 negatively regulated expression of CSN2 and mTORC1 pathway through the SH3BP4 in the presence and absence of AA. The absence or presence of AA demonstrated that AA negatively regulated expression and nuclear localization of activating transcription factor 4 (ATF4). Overexpression and silencing of ATF4 demonstrated that AA negatively regulated SESN2 expression through ATF4. Together, these results indicate that SESN2 negatively regulates the mTORC1 pathway and subsequent CSN2 synthesis through the SH3BP4 in response to AA absence or presence in CMECs.
Collapse
Affiliation(s)
- Chaochao Luo
- State Key Laboratory of Animal Nutrition , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs , Institute of Animal Sciences, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| |
Collapse
|
7
|
MC159 of Molluscum Contagiosum Virus Suppresses Autophagy by Recruiting Cellular SH3BP4 via an SH3 Domain-Mediated Interaction. J Virol 2019; 93:JVI.01613-18. [PMID: 30842330 DOI: 10.1128/jvi.01613-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
MC159 is a viral FLIP (FLICE inhibitory protein) encoded by the molluscum contagiosum virus (MCV) enabling MCV to evade antiviral immunity and to establish persistent infections in humans. Here, we show that MC159 contains a functional SH3 binding motif, which mediates avid and selective binding to SH3BP4, a signaling protein known to regulate endocytic trafficking and suppress cellular autophagy. The capacity to bind SH3BP4 was dispensable for regulation of NF-κB-mediated transcription and suppression of proapoptotic caspase activation but contributed to inhibition of amino acid starvation-induced autophagy by MC159. These results provide new insights into the cellular functions of MC159 and reveal SH3BP4 as a novel host cell factor targeted by a viral immune evasion protein.IMPORTANCE After the eradication of smallpox, molluscum contagiosum virus (MCV) is the only poxvirus restricted to infecting humans. MCV infection is common and causes benign skin lesions that usually resolve spontaneously but may persist for years and grow large, especially in immunocompromised individuals. While not life threatening, MCV infections pose a significant global health burden. No vaccine or specific anti-MCV therapy is available. MCV encodes several proteins that enable it to evade antiviral immunity, a notable example of which is the MC159 protein. In this study, we describe a novel mechanism of action for MC159 involving hijacking of a host cell protein called SH3BP4 to suppress autophagy, a cellular recycling mechanism important for antiviral immunity. This study contributes to our understanding of the host cell interactions of MCV and the molecular function of MC159.
Collapse
|
8
|
Antas P, Novellasdemunt L, Kucharska A, Massie I, Carvalho J, Oukrif D, Nye E, Novelli M, Li VSW. SH3BP4 Regulates Intestinal Stem Cells and Tumorigenesis by Modulating β-Catenin Nuclear Localization. Cell Rep 2019; 26:2266-2273.e4. [PMID: 30811977 PMCID: PMC6391711 DOI: 10.1016/j.celrep.2019.01.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/09/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023] Open
Abstract
Wnt signals at the base of mammalian crypts play a pivotal role in intestinal stem cell (ISC) homeostasis, whereas aberrant Wnt activation causes colon cancer. Precise control of Wnt signal strength is governed by a number of negative inhibitory mechanisms acting at distinct levels of the cascade. Here, we identify the Wnt negative regulatory role of Sh3bp4 in the intestinal crypt. We show that the loss of Sh3bp4 increases ISC and Paneth cell numbers in murine intestine and accelerates adenoma development in Apcmin mice. Mechanistically, human SH3BP4 inhibits Wnt signaling downstream of β-catenin phosphorylation and ubiquitination. This Wnt inhibitory role is dependent on the ZU5 domain of SH3BP4. We further demonstrate that SH3BP4 is expressed at the perinuclear region to restrict nuclear localization of β-catenin. Our data uncover the tumor-suppressive role of SH3BP4 that functions as a negative feedback regulator of Wnt signaling through modulating β-catenin's subcellular localization.
Collapse
Affiliation(s)
- Pedro Antas
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Anna Kucharska
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Isobel Massie
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joana Carvalho
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dahmane Oukrif
- Histopathology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marco Novelli
- Histopathology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Vivian S W Li
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
9
|
Pacault M, Nizon M, Pichon O, Vincent M, Le Caignec C, Isidor B. A de novo 2q37.2 deletion encompassing AGAP1 and SH3BP4 in a patient with autism and intellectual disability. Eur J Med Genet 2018; 62:103586. [PMID: 30472483 DOI: 10.1016/j.ejmg.2018.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/19/2018] [Accepted: 11/22/2018] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorders are complex neurodevelopmental syndromes characterized by phenotypic and genetic heterogeneity. Further identification of causal genes may help in better understanding the underlying mechanisms of the disorder, thus improving the patients' management. To date, abnormal synaptogenesis is thought to be one of the major underlying causes of autism spectrum disorders. Here, using oligoarray-based comparative genomic hybridization, we identified a de novo deletion at 2q37.2 locus spanning 1 Mb and encompassing AGAP1 and SH3BP4, in a boy with autism and intellectual disability. Both genes have been described as being involved in endosomal trafficking, and AGAP1 in particular has been shown to be expressed in the developing brain and to play a role in dendritic spine formation and synapse function, making it a potential causative gene to our patient's phenotype.
Collapse
Affiliation(s)
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Olivier Pichon
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Marie Vincent
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Cédric Le Caignec
- CHU Nantes, Service de Génétique Médicale, Nantes, France; INSERM, UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissue, Nantes, France
| | - Bertrand Isidor
- CHU Nantes, Service de Génétique Médicale, Nantes, France; INSERM, UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissue, Nantes, France
| |
Collapse
|
10
|
Picca A, Pesce V, Lezza AMS. Does eating less make you live longer and better? An update on calorie restriction. Clin Interv Aging 2017; 12:1887-1902. [PMID: 29184395 PMCID: PMC5685139 DOI: 10.2147/cia.s126458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complexity of aging is hard to be captured. However, apart from its tissue-specific features, a structural and functional progressive decline of the whole organism that leads to death, often preceded by a phase of chronic morbidity, characterizes the common process of aging. Therefore, the research goal of scientists in the field moved from the search for strategies able to extend longevity to those ensuring healthy aging associated with a longer lifespan referred to as “healthspan”. The aging process is plastic and can be tuned by multiple mechanisms including dietary and genetic interventions. To date, the most robust approach, efficient in warding off the cellular markers of aging, is calorie restriction (CR). Here, after a preliminary presentation of the major debate originated by CR, we concisely overviewed the recent results of CR treatment on humans. We also provided an update on the molecular mechanisms involved by CR and the effects on some of the age-associated cellular markers. We finally reviewed a number of tested CR mimetics and concluded with an evaluation of future applications of such dietary approach.
Collapse
Affiliation(s)
- Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | |
Collapse
|
11
|
Kim M, Chin YW, Lee EJ. α, γ-Mangostins Induce Autophagy and Show Synergistic Effect with Gemcitabine in Pancreatic Cancer Cell Lines. Biomol Ther (Seoul) 2017; 25:609-617. [PMID: 28822990 PMCID: PMC5685430 DOI: 10.4062/biomolther.2017.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/28/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is one of the most lethal and aggressive cancers in the world. However, no effective treatment is currently available for pancreatic cancer. The objective of this study was to determine the anti-pancreatic cancer effect of α-mangostin (αM) and γ-mangostin (γM) extracted from the pericarp of Garcinia mangostana L.. Both αM and γM reduced the viability of pancreatic cancer cells MIA PaCa-2 and PANC-1 in a dose-dependent manner. These compounds induced apoptosis by increasing c-PARP and c-Caspase 3 levels. They also induced autophagy by increasing levels of microtubule-associated protein 1A/1B light chain 3B (LC3II) in both cell lines while decreasing sequestosome 1 (p62) in MIA PaCa-2. Both αM and γM induced autophagy through increasing phosphorylation levels of AMP-activated protein kinase (p-AMPK) and p38-mitogen activated protein kinase (p-p38) while decreasing phosphorylation level of mammalian target of rapamycin complex 1 (p-mTOR). Of various microRNAs (miRNA), miR-18a was found to be a putative regulatory miRNA for autophagy induced by αM or γM. In combination with gemcitabine, a compound frequently used in pancreatic cancer treatment, αM and γM showed synergistic anti-cancer effects in MIA PaCa-2. Collectively, these results suggest that αM and γM can induce apoptosis and autophagy in pancreatic cancer cells and that their anti-cancer effect is likely to be associated with miR-18a. In conclusion, αM and γM might be used as a potential new therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Myoungjae Kim
- College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Eun Joo Lee
- College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
12
|
Heiss C, Spyridopoulos I, Haendeler J. Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules. Exp Gerontol 2017; 109:108-118. [PMID: 28658611 DOI: 10.1016/j.exger.2017.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Abstract
Cardiovascular aging is a highly dynamic process. Despite the fact that cardiovascular function and structure change with age, they can still be modulated even in aged humans. The most prominent approaches to improve age-dependent vascular changes include dietary restriction and pharmacologic agents interacting with signaling pathways implicated in this context. These include inhibition of TOR, glycolysis, and GH/IGF-1, activation of sirtuins, and AMPK, as well as modulators of inflammation, epigenetic pathways, and telomeres. Promising nutritional approaches include Mediterranean diet and novel dietary bioactives including flavanols, anthocyanins, and lignins. Many plant bioactives improve cardiovascular parameters implied in vascular healthy aging including endothelial function, arterial stiffness, blood pressure, cholesterol, and glycemic control. However, the mechanism of action of most bioactives is not established and it remains to be elucidated whether they act as dietary restriction mimetics or via other modes of action. Even more importantly, whether these interventions can slow or even reverses components of cardiovascular aging itself and can increase healthspan or longevity in humans needs to be determined.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Medical Faculty, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - Judith Haendeler
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany.
| |
Collapse
|
13
|
Zheng X, Liang Y, He Q, Yao R, Bao W, Bao L, Wang Y, Wang Z. Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids. Int J Mol Sci 2014; 15:20753-69. [PMID: 25402640 PMCID: PMC4264194 DOI: 10.3390/ijms151120753] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/24/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Mammalian target of rapamycin (mTOR), which is now referred to as mechanistic target of rapamycin, integrates many signals, including those from growth factors, energy status, stress, and amino acids, to regulate cell growth and proliferation, protein synthesis, protein degradation, and other physiological and biochemical processes. The mTOR-Rheb-TSC-TBC complex co-localizes to the lysosome and the phosphorylation of TSC-TBC effects the dissociation of the complex from the lysosome and activates Rheb. GTP-bound Rheb potentiates the catalytic activity of mTORC1. Under conditions with growth factors and amino acids, v-ATPase, Ragulator, Rag GTPase, Rheb, hVps34, PLD1, and PA have important but disparate effects on mTORC1 activation. In this review, we introduce five models of mTORC1 activation by growth factors and amino acids to provide a comprehensive theoretical foundation for future research.
Collapse
Affiliation(s)
- Xu Zheng
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yan Liang
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Qiburi He
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Ruiyuan Yao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Wenlei Bao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Lili Bao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yanfeng Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Zhigang Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
14
|
Poncet N, Mitchell FE, Ibrahim AFM, McGuire VA, English G, Arthur JSC, Shi YB, Taylor PM. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PLoS One 2014; 9:e89547. [PMID: 24586861 PMCID: PMC3935884 DOI: 10.1371/journal.pone.0089547] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/22/2014] [Indexed: 01/13/2023] Open
Abstract
The System L1-type amino acid transporter mediates transport of large neutral amino acids (LNAA) in many mammalian cell-types. LNAA such as leucine are required for full activation of the mTOR-S6K signalling pathway promoting protein synthesis and cell growth. The SLC7A5 (LAT1) catalytic subunit of high-affinity System L1 functions as a glycoprotein-associated heterodimer with the multifunctional protein SLC3A2 (CD98). We generated a floxed Slc7a5 mouse strain which, when crossed with mice expressing Cre driven by a global promoter, produced Slc7a5 heterozygous knockout (Slc7a5+/−) animals with no overt phenotype, although homozygous global knockout of Slc7a5 was embryonically lethal. Muscle-specific (MCK Cre-mediated) Slc7a5 knockout (MS-Slc7a5-KO) mice were used to study the role of intracellular LNAA delivery by the SLC7A5 transporter for mTOR-S6K pathway activation in skeletal muscle. Activation of muscle mTOR-S6K (Thr389 phosphorylation) in vivo by intraperitoneal leucine injection was blunted in homozygous MS-Slc7a5-KO mice relative to wild-type animals. Dietary intake and growth rate were similar for MS-Slc7a5-KO mice and wild-type littermates fed for 10 weeks (to age 120 days) with diets containing 10%, 20% or 30% of protein. In MS-Slc7a5-KO mice, Leu and Ile concentrations in gastrocnemius muscle were reduced by ∼40% as dietary protein content was reduced from 30 to 10%. These changes were associated with >50% decrease in S6K Thr389 phosphorylation in muscles from MS-Slc7a5-KO mice, indicating reduced mTOR-S6K pathway activation, despite no significant differences in lean tissue mass between groups on the same diet. MS-Slc7a5-KO mice on 30% protein diet exhibited mild insulin resistance (e.g. reduced glucose clearance, larger gonadal adipose depots) relative to control animals. Thus, SLC7A5 modulates LNAA-dependent muscle mTOR-S6K signalling in mice, although it appears non-essential (or is sufficiently compensated by e.g. SLC7A8 (LAT2)) for maintenance of normal muscle mass.
Collapse
Affiliation(s)
- Nadège Poncet
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Fiona E. Mitchell
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), NICHD, NIH, Bethesda, Maryland, United States of America
| | - Adel F. M. Ibrahim
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Victoria A. McGuire
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Grant English
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J. Simon C Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), NICHD, NIH, Bethesda, Maryland, United States of America
- * E-mail: (Y-BS); (PMT)
| | - Peter M. Taylor
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (Y-BS); (PMT)
| |
Collapse
|