1
|
Qin Y, Li Y, Wang Y, Wei Q, Dai L, Huang M, Chen Y, Gu Y, Yang T, Zhang M. Plasticity deficits of Tregs remodeling toward Th1-like and Th17-like Tregs in individuals with type 1 diabetes. J Endocrinol Invest 2025:10.1007/s40618-025-02557-w. [PMID: 40029535 DOI: 10.1007/s40618-025-02557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE To identify distinct Th-like regulatory T cell (Treg) subsets in the peripheral blood of individuals with type 1 diabetes (T1D) and investigate potential factors that affect Treg polarization within the context of autoimmunity. METHODS A total of 49 T1D patients and 20 healthy controls (HCs) were enrolled in this study. Th-like Treg subsets, including Th1-like, Th2-like and Th17-like Tregs, as well as Th cell subsets in peripheral blood were assessed by flow cytometry. Single nucleotide polymorphisms in Treg-related genes were analyzed. The levels of inflammatory cytokines were measured by ELISA. RESULTS We observed a decreased frequency of Th1-like Tregs in peripheral blood of T1D patients, while the proportion of total Foxp3+ Tregs remained unchanged. Moreover, an imbalance of Th17-like Treg/Th17 cells was noted, characterized by a decreased frequency of Th17-like Tregs and an increased proportion of Th17 cells. Further analysis revealed a correlation between the frequency of Th2-like Tregs and the risk variants of IL-2RA rs3118470. Notably, T1D patients with a normal weight exhibited a higher frequency of Th1-like Tregs compared to their lean and overweight counterparts. However, Treg plasticity was not associated with disease characteristics. Additionally, the serum levels of IL-1β, TNF-α and IL-6 in T1D patients were significantly higher than those in HCs, and the proportions of Th1-like and Th2-like Tregs were negatively associated with IL-6 and TNF-α concentrations in T1D patients, respectively. Nevertheless, the proportions of Th-like Treg subsets in the peripheral blood of HCs exhibited no significant correlation with age, BMI, or the levels of inflammatory cytokines. CONCLUSION Our study has provided novel evidence on the altered plasticity and the possible mechanisms underlying the transformation of conventional Tregs towards Th1-like and Th17-like Tregs in the peripheral blood of T1D patients. The findings serve to further augment our understanding of the Treg-mediated immune imbalance that plays a crucial role in the immunopathogenesis of T1D.
Collapse
Affiliation(s)
- Yao Qin
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuxiao Li
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Endocrinology, Yixing Branch of Wuxi Medical Center of Nanjing Medical University, Yixing People' s Hospital, Yixing, 214200, China
| | - Yueshu Wang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qianying Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liuyan Dai
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mei Huang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Gu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mei Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Kobayashi S, Nagafuchi Y, Shoda H, Fujio K. The Pathophysiological Roles of Regulatory T Cells in the Early Phase of Systemic Sclerosis. Front Immunol 2022; 13:900638. [PMID: 35686127 PMCID: PMC9172592 DOI: 10.3389/fimmu.2022.900638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that is characterized by vascular damage and fibrosis. Both clinical manifestations and immunological disturbances are diverse according to the disease duration. Particularly, changes in immunological processes are prominent in the early phase of SSc. The orchestration of several subsets of immune cells promotes autoimmune responses and inflammation, and eventually stimulates pro-fibrotic processes. Many reports have indicated that CD4+ T cells play pivotal roles in pathogenesis in the early phase of SSc. In particular, the pathogenic roles of regulatory T (Treg) cells have been investigated. Although the results were controversial, recent reports suggested an increase of Treg cells in the early phase of SSc patients. Treg cells secrete transforming growth factor-β (TGF-β), which promotes myofibroblast activation and fibrosis. In addition, the dysfunction of Treg cells in the early phase of SSc was reported, which results in the development of autoimmunity and inflammation. Notably, Treg cells have the plasticity to convert to T-helper17 (Th17) cells under pro-inflammatory conditions. Th17 cells secrete IL-17A, which could also promote myofibroblast transformation and fibrosis and contributes to vasculopathy, although the issue is still controversial. Our recent transcriptomic comparison between the early and late phases of SSc revealed a clear difference of gene expression patterns only in Treg cells. The gene signature of an activated Treg cell subpopulation was expanded in the early phase of SSc and the oxidative phosphorylation pathway was enhanced, which can promote Th17 differentiation. And this result was accompanied by the increase in Th17 cells frequency. Therefore, an imbalance between Treg and Th17 cells could also have an important role in the pathogenesis of the early phase of SSc. In this review, we outlined the roles of Treg cells in the early phase of SSc, summarizing the data of both human and mouse models. The contributions of Treg cells to autoimmunity, vasculopathy, and fibrosis were revealed, based on the dysfunction and imbalance of Treg cells. We also referred to the potential development in treatment strategies in SSc.
Collapse
Affiliation(s)
- Satomi Kobayashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Medicine and Rheumatology, Tokyo Metropolitan Geriatric Hospital, Itabashi-ku, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
3
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
4
|
Knobler R, Arenberger P, Arun A, Assaf C, Bagot M, Berlin G, Bohbot A, Calzavara-Pinton P, Child F, Cho A, French LE, Gennery AR, Gniadecki R, Gollnick HPM, Guenova E, Jaksch P, Jantschitsch C, Klemke C, Ludvigsson J, Papadavid E, Scarisbrick J, Schwarz T, Stadler R, Wolf P, Zic J, Zouboulis C, Zuckermann A, Greinix H. European dermatology forum: Updated guidelines on the use of extracorporeal photopheresis 2020 - Part 2. J Eur Acad Dermatol Venereol 2020; 35:27-49. [PMID: 32964529 PMCID: PMC7821314 DOI: 10.1111/jdv.16889] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
Background Following the first investigational study on the use of extracorporeal photopheresis for the treatment of cutaneous T‐cell lymphoma published in 1983, this technology has received continued use and further recognition for additional earlier as well as refractory forms. After the publication of the first guidelines for this technology in the JEADV in 2014, this technology has maintained additional promise in the treatment of other severe and refractory conditions in a multidisciplinary setting. It has confirmed recognition in well‐known documented conditions such as graft‐vs.‐host disease after allogeneic bone marrow transplantation, systemic sclerosis, solid organ transplant rejection including lung, heart and liver and to a lesser extent inflammatory bowel disease. Materials and methods In order to further provide recognized expert practical guidelines for the use of this technology for all indications, the European Dermatology Forum (EDF) again proceeded to address these questions in the hands of the recognized experts within and outside the field of dermatology. This was done using the recognized and approved guidelines of EDF for this task. All authors had the opportunity to review each contribution as it was added. Results and conclusion These updated 2020 guidelines provide at present the most comprehensive available expert recommendations for the use of extracorporeal photopheresis based on the available published literature and expert consensus opinion. The guidelines were divided into two parts: PART I covers Cutaneous T‐cell lymphoma, chronic graft‐vs.‐host disease and acute graft‐vs.‐host disease, while PART II will cover scleroderma, solid organ transplantation, Crohn’s disease, use of ECP in paediatric patients, atopic dermatitis, type 1 diabetes, pemphigus, epidermolysis bullosa acquisita and erosive oral lichen planus.
Collapse
Affiliation(s)
- R Knobler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - P Arenberger
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Arun
- FRCPath, The Rotherham NHA Foundation Trust, Rotherham, United Kingdom
| | - C Assaf
- Department of Dermatology and Venerology, Helios Klinikum Krefeld, Krefeld, Germany
| | - M Bagot
- Hospital Saint Louis, Université de Paris, Paris, France
| | - G Berlin
- Department of Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - A Bohbot
- Onco-Hematology Department, Hautepierre Hospital, Strasbourg, France
| | | | - F Child
- FRCP, St John's Institution of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - A Cho
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - L E French
- Department of Dermatology, University Hospital, München, Germany
| | - A R Gennery
- Translational and Clinical Research Institute Newcastle University Great North Children's Hospital Newcastle upon Tyne, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - R Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, Canada
| | - H P M Gollnick
- Department Dermatology & Venereology Otto-von-Guericke University, Magdeburg, Germany
| | - E Guenova
- Faculty of Biology and Medicine, University of Lausanne and Department of Dermatology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - P Jaksch
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - C Jantschitsch
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C Klemke
- Hautklinik Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - J Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, University Hospital, Linköping University, Linköping, Sweden
| | - E Papadavid
- National and Kapodistrian University of Athens, Athens, Greece
| | - J Scarisbrick
- University Hospital Birmingham, Birmingham, United Kingdom
| | - T Schwarz
- Department of Dermatology, University Clinics Schleswig-Holstein, Kiel, Germany
| | - R Stadler
- University Clinic for Dermatology Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| | - P Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - J Zic
- Vanderbilt University Medical Center Department of Dermatology, Nashville, Tennessee, USA
| | - C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - A Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - H Greinix
- LKH-Univ. Klinikum Graz, Division of Haematology, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Vieyra-Garcia PA, Wolf P. Extracorporeal Photopheresis: A Case of Immunotherapy Ahead of Its Time. Transfus Med Hemother 2020; 47:226-235. [PMID: 32595427 DOI: 10.1159/000508479] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Extracorporeal photopheresis (ECP) is a cell-based immunotherapy that involves the reinfusion of autologous leukocytes after exposure to psoralen and UVA. The treatment has been used for over 30 years, at first on patients with cutaneous T-cell lymphoma (CTCL) and later for the management of patients with graft-versus-host disease (GvHD), sclerosing disorders, atopic dermatitis, and other diseases that may share the common driving factor of a pathogenic T-cell clone or clones in blood circulation. Patients with clinical improvement mount an antigen-specific immune response that may have tolerance traits in the case of GvHD or anticlonal cytotoxic characteristics in the case of CTCL. The exact mechanisms that dictate one response or the other are not fully understood, but the evidence accumulated so far indicates that multiple events occur simultaneously and consequentially contribute to the end result. These include contact of cells with the outside (plastics and tubing of the ECP apparatus), exposure to psoralen and UVA that activates platelets, monocytes, and other myeloid cells, the release of damage-associated molecular patterns, differentiation of monocytes into dendritic cells, and generation and successive presentation of numerous antigens after the phagocytosis of apoptotic cells. Once reintroduced, the ECP product increases the frequency and activity of regulatory T cells (Tregs), shifts the systemic cytokine balance, and promotes extravasation of immune cells that together shape the effects of this treatment. In this review, we summarize the seminal work and most recent literature of the therapeutic mechanisms and reflect on future avenues of improvements and applications of ECP.
Collapse
Affiliation(s)
| | - Peter Wolf
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Hequet O, Nosbaum A, Guironnet-Paquet A, Blasco E, Nicolas-Virelizier E, Griffith TS, Rigal D, Cognasse F, Nicolas JF, Vocanson M. CD8 + T cells mediate ultraviolet A-induced immunomodulation in a model of extracorporeal photochemotherapy. Eur J Immunol 2020; 50:725-735. [PMID: 32012249 DOI: 10.1002/eji.201948318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
Extracorporeal photochemotherapy (ECP) that takes advantage of the immunomodulatory effects of UV light has been extensively used for many years for the treatment of several T cell-mediated diseases, including graft-versus-host disease (GvHD) and systemic scleroderma. Immune mechanisms that lead to the establishment of T cell tolerance in ECP-treated patients remain poorly known. In this study, we have tested the effect of UV/psoralen-treated BM-derived dendritic cells, referred to as ECP-BMDCs on the outcome of an antigen-specific T cell-mediated reaction, that is, contact hypersensitivity (CHS), which is mediated by CD8+ effector T cells (CD8+ Teff ). The intravenous (i.v.) injection of antigen-pulsed ECP-BMDCs in recipient C57BL/6 mice induced specific CD8+ T cells endowed with immunomodulatory properties (referred to as CD8+ TECP ), which prevented the priming of CD8+ Teff and the development of CHS, independently of conventional CD4+ regulatory T cells. CD8+ TECP mediated tolerance by inhibiting the migration and functions of skin DC and subsequently the priming of CD8+ Teff . CD8+ TECP displayed none of the phenotypes of the usual CD8+ T regulatory cells described so far. Our results reveal an underestimated participation of CD8+ T cells to ECP-induced immunomodulation that could explain the therapeutic effects of ECP in T cell-mediated diseases.
Collapse
Affiliation(s)
- Olivier Hequet
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France.,Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Apheresis Unit, Hôpital Lyon Sud, Pierre Bénite, France.,Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Scientific Departements, Saint-Etienne, France
| | - Audrey Nosbaum
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Aurélie Guironnet-Paquet
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Elisabeth Blasco
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Emmanuelle Nicolas-Virelizier
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Thomas S Griffith
- Department of Urology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Dominique Rigal
- Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Scientific Departements, Saint-Etienne, France
| | - Fabrice Cognasse
- Etablissement Français du Sang (EFS) Auvergne Rhône-Alpes, Scientific Departements, Saint-Etienne, France.,GIMAP-EA 3064, Lyon University, Saint-Etienne, France
| | - Jean-François Nicolas
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| | - Marc Vocanson
- CIRI - Centre International de Recherche en Infectiologie, Team « Immunology of Skin Allergy and Vaccination », Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon University, F-69007, Lyon, France
| |
Collapse
|
7
|
Wiese F, Reinhardt-Heller K, Volz M, Gille C, Köstlin N, Billing H, Handgretinger R, Holzer U. Monocytes show immunoregulatory capacity on CD4 + T cells in a human in-vitro model of extracorporeal photopheresis. Clin Exp Immunol 2018; 195:369-380. [PMID: 30411330 DOI: 10.1111/cei.13232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
Extracorporeal photopheresis (ECP) is a widely used immunomodulatory therapy for the treatment of various T cell-mediated disorders such as cutaneous T cell lymphoma (CTCL), graft-versus-host disease (GvHD) or systemic sclerosis. Although clinical benefits of ECP are already well described, the underlying mechanism of action of ECP is not yet fully understood. Knowledge on the fate of CD14+ monocytes in the context of ECP is particularly limited and controversial. Here, we investigated the immunoregulatory function of ECP treated monocytes on T cells in an in-vitro ECP model. We show that ECP-treated monocytes significantly induce proinflammatory T cell types in co-cultured T cells, while anti-inflammatory T cells remain unaffected. Furthermore, we found significantly reduced proliferation rates of T cells after co-culture with ECP-treated monocytes. Both changes in interleukin secretion and proliferation were dependent on cell-contact between monocytes and T cells. Interestingly, blocking interactions of programmed death ligand 1 (PD-L1) to programmed death 1 (PD-1) in the in-vitro model led to a significant recovery of T cell proliferation. These results set the base for further studies on the mechanism of ECP, especially the regulatory role of ECP-treated monocytes.
Collapse
Affiliation(s)
- F Wiese
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - K Reinhardt-Heller
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - M Volz
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - C Gille
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - N Köstlin
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - H Billing
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - R Handgretinger
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - U Holzer
- Tuebingen University Children's Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| |
Collapse
|
8
|
Qiao YC, Pan YH, Ling W, Tian F, Chen YL, Zhang XX, Zhao HL. The Yin and Yang of regulatory T cell and therapy progress in autoimmune disease. Autoimmun Rev 2017; 16:1058-1070. [PMID: 28778708 DOI: 10.1016/j.autrev.2017.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases (ADs) are primarily mediated by the failure of immunological self-tolerance. Regulatory T cells (Tregs) play a critical role in the maintenance of induced tolerance to peripheral self-antigens, suppressing immoderate immune responses deleterious to the host and preventing the AD development. Tregs and suppressive cytokines are homeostatic with effective cells plus pro-inflammatory cytokines in healthy hosts which is defined as "Yang", and ADs are usually induced in case of disturbed homeostasis, which is defined as "Yin". Indeed, the Yin-Yang balance could explain the pathogenic mechanism of ADs. Tregs not only suppress CD4+ and CD8+ T cells but also can suppress other immune cells such as B cell, natural killer cell, DC and other antigen-presenting cell through cell-cell contact or secreting suppressive cytokines. In Tregs, Foxp3 as an intracellular protein displays a more specific marker than currently used other cell-surface markers (such as CD25, CD40L, CTLA-4, ICOS and GITR) in defining the naturally occurring CD4+ Tregs. Though the precise mechanism for the opposite effects of Tregs has not been fully elucidated, the importance of Tregs in ADs has been proved to be associated with kinds of immunocytes. At present, the surface marker, frequency and function of Tregs existed conflicts and hence the Tregs therapy in ADs faces challenges. Though some success has been achieved with Tregs therapy in few ADs both in murine models and humans, more effort should paid to meet the future challenges. This review summarizes the progress and discusses the phenotypic, numeric and functional abnormalities of Tregs and is the first time to systematically review the progress of Tregs therapy in kinds of ADs.
Collapse
Affiliation(s)
- Yong-Chao Qiao
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan-Hong Pan
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Wei Ling
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Fang Tian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yin-Ling Chen
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Xiao-Xi Zhang
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Hai-Lu Zhao
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
9
|
Regulatory immune cells and functions in autoimmunity and transplantation immunology. Autoimmun Rev 2017; 16:435-444. [DOI: 10.1016/j.autrev.2017.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 12/15/2022]
|
10
|
Slobodin G, Rimar D. Regulatory T Cells in Systemic Sclerosis: a Comprehensive Review. Clin Rev Allergy Immunol 2017; 52:194-201. [PMID: 27318947 DOI: 10.1007/s12016-016-8563-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic sclerosis (SSc) is a chronic inflammatory disease with complex pathogenesis, based on the sophisticated interplay of injury to the vascular endothelium, exaggerated tissue regeneration and fibrosis, and extensive immune abnormalities. The role of regulatory T cells (Tregs) in the development of SSc has started being studied during the last decade with new aspects being disclosed continuously, in parallel with the better understanding of Tregs physiology. There is a general agreement in the medical literature regarding the decreased functional capacity of circulating Tregs in SSc. Some patients, particularly those with active disease, may have increased numbers of circulating Tregs, representing the inhibitory response of the immune system to its inappropriate activation or occurring as a compensatory move for Tregs' decreased suppressive ability. Decreased pool of circulating Tregs can be seen in other SSc patients, with even lower Treg percentages seen in patients with long-standing disease. Skin-resident Tregs are depleted in advanced SSc but can be active and have a role in earlier disease stages. In addition to diminished suppressive ability, Tregs can contribute to SSc evolution by their microenvironment-dependent transformation to pathogenic effector T cells of Th17 or Th2 lineages with respective pro-inflammatory or pro-fibrotic activity. The current data on the effects of existing treatment modalities, including autologous stem cell transplantation, on Tregs function in SSc, is controversial, not being sufficiently elaborated.
Collapse
Affiliation(s)
- Gleb Slobodin
- Rheumatology, Bnai Zion Medical Center, Haifa, Israel. .,Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Doron Rimar
- Rheumatology, Bnai Zion Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
11
|
Deng C, Li W, Chen S, Li Y. Meta-analysis of the changes of peripheral blood regulatory T cell to CD4 + T cell ratio in patients with systemic sclerosis. Sci Rep 2017; 7:43532. [PMID: 28317890 PMCID: PMC5340793 DOI: 10.1038/srep43532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
Current reports on the changes in peripheral blood regulatory T cell (Tregs) to CD4+ T cell ratio in systemic sclerosis (SSc) patients are varied in their conclusions. We therefore performed a meta-analysis to identify the actual change in the proportion of peripheral Tregs in SSc. Three databases, namely EMBASE, ISI web of knowledge, and Pubmed were systematically searched for relevant literature. Approximately 250 SSc patients and controls from several studies were included in this analysis. Comprehensive Meta Analysis Version 2.0 software was used to conduct the meta-analysis. Six studies were included in the meta-analysis. Results of the meta-analysis showed high degree of heterogeneity (I2 = 96.98), and a random-effect model was used in the subsequent analysis. The ratio of circulating Tregs to CD4+ T cell in SSc was lower than in controls, but not statistically significantly so (-0.61 ± 0.94, P = 0.52). Subgroup analysis did not identify any potential source of heterogeneity. This meta-analysis indicated that Tregs might play a less prominent immunosuppressive role in the immune system in SSc patients, but needs further confirmation.
Collapse
Affiliation(s)
- Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, 100073, Beijing, China
| | - Wenli Li
- Department of Rheumatology, China-Japan Friendship Hospital, Yinghua East Road, Chaoyang District, 100029, Beijing, China
| | - Si Chen
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, 2# Anzhen Road, Chaoyang District, 100029, Beijing, China
| | - Yongzhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, 100073, Beijing, China
| |
Collapse
|
12
|
Nakken B, Bodolay E, Szodoray P. Cytokine Milieu in Undifferentiated Connective Tissue Disease: a Comprehensive Review. Clin Rev Allergy Immunol 2016; 49:152-62. [PMID: 25274451 DOI: 10.1007/s12016-014-8452-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Undifferentiated connective tissue disease (UCTD) is a unique clinical entity, a potential forerunner of well-established systemic autoimmune/rheumatic diseases. UCTD is characterized by the presence of various clinical symptoms, as well as a diverse repertoire of autoantibodies, resembling systemic autoimmune diseases. Since approximately one third of these patients consequently transform into a full-blown systemic autoimmune/rheumatic disease, it is of major importance to assess pathogenic factors leading to this progression. In view of the fact that the serological and clinical picture of UCTD and systemic autoimmune diseases are very similar, it is assumed that analogous pathogenic factors perpetuate both disease entities. In systemic autoimmune conditions, a quantitative and qualitative impairment of regulatory T cells has been shown previously, and in parallel, a relative dominance of pro-inflammatory Th17 cells has been introduced. Moreover, the imbalance between regulatory and Th17 cells plays a pivotal role in the initiation and propagation of UCTD. Additionally, we depict a cytokine imbalance, which give raise to a biased T cell homeostasis from the UCTD phase throughout the fully developed systemic autoimmune disease stage. The levels of interleukin (IL)-6, IL-12, IL-17, IL-23, and interferon (IFN)-γ were pathologically increased with a parallel reduction of IL-10. We believe that the assessment of Th17/Treg cell ratio, as well as the simultaneous quantitation of cytokines may give a useful diagnostic tool at the early UCTD stage to identify patients with a higher chance of consecutive disease progression toward serious systemic autoimmune diseases. Moreover, the early targeted immunomodulating therapy in these patients may decelerate, or even stop this progression, before the development of serious autoimmune conditions with organ damage.
Collapse
Affiliation(s)
- Britt Nakken
- Institute of Immunology, Rikshospitalet, Oslo University Hospital, Sognsvannsveien 20, Oslo, Norway, N-0027
| | - Edit Bodolay
- Department of Clinical Immunology, Institute of Medicine, University of Debrecen Medical and Health Science Centre, Debrecen, Hungary
| | - Peter Szodoray
- Institute of Immunology, Rikshospitalet, Oslo University Hospital, Sognsvannsveien 20, Oslo, Norway, N-0027.
| |
Collapse
|
13
|
Selected Aspects in the Pathogenesis of Autoimmune Diseases. Mediators Inflamm 2015; 2015:351732. [PMID: 26300591 PMCID: PMC4537751 DOI: 10.1155/2015/351732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/24/2015] [Indexed: 11/26/2022] Open
Abstract
Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.
Collapse
|
14
|
Papp G, Horvath IF, Gyimesi E, Barath S, Vegh J, Szodoray P, Zeher M. The assessment of immune-regulatory effects of extracorporeal photopheresis in systemic sclerosis: a long-term follow-up study. Immunol Res 2015; 64:404-11. [DOI: 10.1007/s12026-015-8678-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Barten MJ, Dieterlen MT. Extracorporeal photopheresis after heart transplantation. Immunotherapy 2015; 6:927-44. [PMID: 25313571 DOI: 10.2217/imt.14.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The addition of extracorporeal photopheresis (ECP) to a standard immunosuppressive drug therapy after heart transplantation in clinical studies has shown to be beneficial, for example, by reducing acute rejection, allograft vasculopathy or CMV infection. However, the protocols varied considerably, have a predetermined finite number of ECP treatments and adjuvant immunosuppressive regimens used in combination with ECP have differed significantly. Furthermore, there are scarce data to guide which patients should be treated with ECP and when or who would benefit further if ECP were to be continued long term to increase the safety by reducing immunosuppressive drug toxicities without losing efficacy. The knowledge of the tolerance-inducing effects of ECP-like upregulation of regulatory T cells and of dendritic cells may allow to develop a strategy to monitor immunomodulation effects of ECP to further identify ECP responders, the optimal individual ECP schedule and whether ECP therapy can replace or reduce immunosuppressive drug therapy.
Collapse
Affiliation(s)
- Markus J Barten
- University Heart Center Hamburg, Department of Cardiovascular Surgery, Hamburg, Germany
| | | |
Collapse
|
16
|
|
17
|
National Institutes of Health State of the Science Symposium in Therapeutic Apheresis: scientific opportunities in extracorporeal photopheresis. Transfus Med Rev 2014; 29:62-70. [PMID: 25459074 DOI: 10.1016/j.tmrv.2014.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 12/20/2022]
Abstract
The clinical use of extracorporeal photopheresis (ECP) for accepted indications such as graft-versus-host disease, transplant rejection, and cutaneous T-cell lymphoma continues to increase. Expanded applications for ECP, such as the treatment of select autoimmune diseases, are being explored. Extracorporeal photopheresis's capacity to both immunotolerize in the autoreactive setting, while immunizing against a lymphoma is unusual and suggestive of a unique mechanism. It is likely that ECP's induction of dendritic cells is key to its efficacy in both of these settings, but exactly how ECP impacts other immune components and their interactions is not fully understood. Further basic science research is necessary to elucidate how these dissimilar cellular activities are functionally integrated. On the clinical side, collaborative multicenter trials designed to recognize the principal variables controlling therapeutic responses and improve prognostic indicators may enable tailoring devices, treatment schedules, and doses to the needs of the individual patients or diseases. This review describes our current understanding of how ECP influences the immune system, reviews the existing clinical applications of ECP, and explores areas for future basic science and clinical research as presented at the National Institutes of Health State of the Science Symposium in Therapeutic Apheresis in November 2012.
Collapse
|
18
|
Abstract
Extracorporeal photochemotherapy (ECP) has been applied to many T-cell mediated diseases where immunosuppressive drugs are insufficient or not tolerated. As ECP is mainly used in rare indications after failure of other therapies, controlled studies are hardly possible. In addition, the importance of the extracorporeal circuit imposes ethical doubts in organising sham ECP procedure, which explains the rarity of controlled double-blind studies. However, encouraging and even successful results have been reported in newly developed diabetes mellitus, erosive lichen planus, Crohn's disease, systemic sclerosis, nephrogenic fibrosing dermopathy, atopic dermatitis, rheumatoid arthritis, systemic lupus erythematodes, psoriasis arthritis, cutaneous mucinosis, scleromyxoedema, pemphigus vulgaris, multiple sclerosis, eosinophilic fasciitis and in the prevention of percutaneous transluminal coronary angioplasty (PTCA) restenosis. This article discusses the various levels of evidence in the above cited indications.
Collapse
Affiliation(s)
- Heidrun Andreu-Ullrich
- Head of Dijon Blood Transfusion Centre and Blood Collection Department, Etablissement Français du Sang Bourgogne Franche-Comté, site de Dijon, 2, rue Angélique Ducoudray, BP 47834, 21078 Dijon Cedex, France.
| |
Collapse
|
19
|
Osnes LT, Nakken B, Bodolay E, Szodoray P. Assessment of intracellular cytokines and regulatory cells in patients with autoimmune diseases and primary immunodeficiencies - novel tool for diagnostics and patient follow-up. Autoimmun Rev 2013; 12:967-71. [PMID: 23541481 DOI: 10.1016/j.autrev.2013.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
Abstract
Serum and intracytoplasmic cytokines are mandatory in host defense against microbes, but also play a pivotal role in the pathogenesis of autoimmune diseases by initiating and perpetuating various cellular and humoral autoimmune processes. The intricate interplay and fine balance of pro- and anti-inflammatory processes drive, whether inflammation and eventually organ damage will occur, or the inflammatory cascade quenches. In the early and late, as well as inactive and active stages of autoimmune diseases, different cellular and molecular patterns can dominate in these patients. However, the simultaneous assessment of pro- and anti-inflammatory biomarkers aids to define the immunological state of a patient. A group of the most useful inflammatory biomarkers are cytokines, and with increasing knowledge during the last decade their role have been well-defined in patients with autoimmune diseases and immunodeficiencies. Multiple pathological processes drive the development of autoimmunity and immunodeficiencies, most of which involve quantitative and qualitative disturbances in regulatory cells, cytokine synthesis and signaling pathways. The assessment of these biomarkers does not aid only in the mechanistic description of autoimmune diseases and immunodeficiencies, but further helps to subcategorize diseases and to evaluate therapy responses. Here, we provide an overview, how monitoring of cytokines and regulatory cells aid in the diagnosis and follow-up of patients with autoimmune diseases and immunodeficiencies furthermore, we pinpoint novel cellular and molecular diagnostic possibilities in these diseases.
Collapse
Affiliation(s)
- Liv T Osnes
- Institute of Immunology, Rikshospitalet, Oslo University Hospital, Norway
| | | | | | | |
Collapse
|