1
|
Ferdowsi N, Stevens W, Baron M, Nikpour M. Damage indices in rheumatic diseases: A systematic review of the literature. Semin Arthritis Rheum 2019; 49:27-34. [PMID: 30745021 DOI: 10.1016/j.semarthrit.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/22/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To review the current literature, and evaluate the psychometric properties of disease damage indices in rheumatic diseases. METHODS A search of Medline, EMBASE, and Cochrane Library databases was performed to June 2018 to identify damage indices in all systemic rheumatic diseases. Articles were included in a systematic review if indices were composite (multi-organ) in nature and if adequate detail on methodology was described. Articles pertaining to the validation of these indices were also reviewed in order to assess the psychometric properties of the indices using the Outcome Measures in Rheumatology Arthritis Clinical Trials (OMERACT) filter as a guide. RESULTS Of the 2659 articles retrieved through the search, we identified 7 damage indices in five diseases: idiopathic inflammatory myopathy, systemic lupus erythematosus, systemic vasculitis, Sjӧgren's syndrome and antiphospholipid syndrome. A further 48 articles were identified pertaining to the validation of these damage indices. The methodological process for the development of these indices included expert consensus, item reduction and item weighting methods. The level of validation that these indices have achieved is variable, with only 2 damage indices fulfilling all criteria of the OMERACT filter. CONCLUSIONS To date, there have been 7 composite disease damage indices created in a variety of rheumatic diseases, with the exception of systemic sclerosis (SSc). This review has informed methodology for the development of a disease damage index in SSc.
Collapse
Affiliation(s)
- N Ferdowsi
- The University of Melbourne, St Vincent's Hospital, Melbourne, Australia; St Vincent's Hospital, Melbourne, Australia
| | - W Stevens
- St Vincent's Hospital, Melbourne, Australia
| | - M Baron
- Jewish General Hospital, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - M Nikpour
- The University of Melbourne, St Vincent's Hospital, Melbourne, Australia; St Vincent's Hospital, Melbourne, Australia.
| |
Collapse
|
2
|
Abstract
Decoy receptor 3 (DcR3), also known as tumor necrosis factor receptor (TNFR) superfamily member 6b (TNFRSF6B), is a soluble decoy receptor which can neutralize the biological functions of three members of tumor necrosis factor superfamily (TNFSF): Fas ligand (FasL), LIGHT, and TL1A. In addition to ‘decoy’ function, recombinant DcR3.Fc is able to modulate the activation and differentiation of dendritic cells (DCs) and macrophages via ‘non-decoy’ action. DcR3-treated DCs skew T cell differentiation into Th2 phenotype, while DcR3-treated macrophages behave M2 phenotype. DcR3 is upregulated in various cancer cells and several inflammatory tissues, and is regarded as a potential biomarker to predict inflammatory disease progression and cancer metastasis. However, whether DcR3 is a pathogenic factor or a suppressor to attenuate inflammatory reactions, has not been discussed comprehensively yet. Because mouse genome does not have DcR3, it is not feasible to investigate its physiological functions by gene-knockout approach. However, DcR3-mediated effects in vitro are determined via overexpressing DcR3 or addition of recombinant DcR3.Fc fusion protein. Moreover, CD68-driven DcR3 transgenic mice are used to investigate DcR3-mediated systemic effects in vivo. Upregulation of DcR3 during inflammatory reactions exerts negative-feedback to suppress inflammation, while tumor cells hijack DcR3 to prevent apoptosis and promote tumor growth and invasion. Thus, ‘switch-on’ of DcR3 expression may be feasible for the treatment of inflammatory diseases and enhance tissue repairing, while ‘switch-off’ of DcR3 expression can enhance tumor apoptosis and suppress tumor growth in vivo.
Collapse
Affiliation(s)
- Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan. .,Institute of Clinical Medicine & Immunology Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Immunology, College of Medicine, National Taiwan University Taipei, Taipei, Taiwan. .,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1 Section 1, Jen Ai Road, Taipei, 10001, Taiwan.
| |
Collapse
|
4
|
Richard AC, Ferdinand JR, Meylan F, Hayes ET, Gabay O, Siegel RM. The TNF-family cytokine TL1A: from lymphocyte costimulator to disease co-conspirator. J Leukoc Biol 2015; 98:333-45. [PMID: 26188076 PMCID: PMC4763597 DOI: 10.1189/jlb.3ri0315-095r] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 12/12/2022] Open
Abstract
Originally described in 2002 as a T cell-costimulatory cytokine, the tumor necrosis factor family member TNF-like factor 1A (TL1A), encoded by the TNFSF15 gene, has since been found to affect multiple cell lineages through its receptor, death receptor 3 (DR3, encoded by TNFRSF25) with distinct cell-type effects. Genetic deficiency or blockade of TL1A-DR3 has defined a number of disease states that depend on this cytokine-receptor pair, whereas excess TL1A leads to allergic gastrointestinal inflammation through stimulation of group 2 innate lymphoid cells. Noncoding variants in the TL1A locus are associated with susceptibility to inflammatory bowel disease and leprosy, predicting that the level of TL1A expression may influence host defense and the development of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Arianne C Richard
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John R Ferdinand
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Françoise Meylan
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Erika T Hayes
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Odile Gabay
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Richard M Siegel
- *Immunoregulation Section, Autoimmunity Branch, NIAMS, National Institutes of Health, Bethesda, Maryland, USA; Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|