1
|
Tenshin H, Delgado-Calle J, Windle JJ, Roodman GD, Chirgwin JM, Kurihara N. Osteocytes and Paget's Disease of Bone. Curr Osteoporos Rep 2024; 22:266-272. [PMID: 38457001 PMCID: PMC11060996 DOI: 10.1007/s11914-024-00863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW To describe the contributions of osteocytes to the lesions in Paget's disease, which are characterized by locally overactive bone resorption and formation. RECENT FINDINGS Osteocytes, the most abundant cells in bone, are altered in Paget's disease lesions, displaying increased size, decreased canalicular length, incomplete differentiation, and less sclerostin expression compared to controls in both patients and mouse models. Pagetic lesions show increased senescent osteocytes that express RANK ligand, which drives osteoclastic bone resorption. Abnormal osteoclasts in Paget's disease secrete abundant IGF1, which enhances osteocyte senescence, contributing to lesion formation. Recent data suggest that osteocytes contribute to lesion formation in Paget's disease by responding to high local IGF1 released from abnormal osteoclasts. Here we describe the characteristics of osteocytes in Paget's disease and their role in bone lesion formation based on recent results with mouse models and supported by patient data.
Collapse
Affiliation(s)
- Hirofumi Tenshin
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - G David Roodman
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - John M Chirgwin
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
- Research Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Noriyoshi Kurihara
- Division of Hematology and Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Khotib J, Marhaeny HD, Miatmoko A, Budiatin AS, Ardianto C, Rahmadi M, Pratama YA, Tahir M. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn 2023; 41:10257-10276. [PMID: 36420663 DOI: 10.1080/07391102.2022.2148749] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, β-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Tahir
- Department of Pharmaceutical Science, Kulliyah of Pharmacy, International Islamic University Malaysia, Pahang, Malaysia
| |
Collapse
|
3
|
Serum Sclerostin and Its Association with Bone Turnover Marker in Metabolic Bone Diseases. DISEASE MARKERS 2022; 2022:7902046. [PMID: 36124027 PMCID: PMC9482545 DOI: 10.1155/2022/7902046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Sclerostin is a secreted inhibitor of Wnt/β-catenin signaling that is mainly produced by osteocytes and is an important regulator of bone remodeling. Some studies have evaluated serum sclerostin levels in metabolic bone diseases, but the results have been contradictory. The profile of serum sclerostin levels in patients with osteogenesis imperfecta (OI), X-linked hypophosphatemia (XLH), and Paget's disease of bone (PDB) was obtained to determine their association with bone turnover marker. Serum sclerostin levels, biochemical parameters, and the bone turnover marker, β-CrossLaps of type 1 collagen containing cross-linked C-telopeptide (β-CTX), were measured in 278 individuals, comprising 71 patients with OI, 51 patients with XLH, 17 patients with PDB, and 139 age- and sex-matched healthy controls. A correlation analysis was performed between sclerostin and β-CTX concentration. The univariate logistic regression analysis was used to analyze factors associated with OI, XLH, and PDB. Patients with PDB (11 male 6 female), aged 44.47 ± 14.75 years; XLH (17 male, 34 female), aged 19.29 ± 15.65 years; and OI (43 male, 28 female), aged 19.57 ± 16.45 years, had higher sclerostin level than age- and sex-matched healthy controls [median(interquartile range): 291.60 (153.42, 357.35) vs. 38.00 (27.06, 68.52) pmol/L, 163.40 (125.10, 238.20) vs. 31.13 (20.37, 45.84) pmol/L, and 130.50 (96.12, 160.80) vs. 119.00 (98.89, 194.80) pmol/L, respectively; P < 0.001]. Patients with PDB had the highest level of serum sclerostin, followed by those with XLH and OI (P < 0.05). Sclerostin was positively correlated with β-CTX in OI and XLH (r = 0.541 and r = 0.661, respectively; P < 0.001). Higher β-CTX and sclerostin levels were associated with a higher risk of OI, XLH, and PBD. Sclerostin may be a biomarker of OI, XLH, and PDB. Whether sclerostin inhibitors can be used in these patients requires further analysis using additional cohorts.
Collapse
|
4
|
Sclerostin: From Molecule to Clinical Biomarker. Int J Mol Sci 2022; 23:ijms23094751. [PMID: 35563144 PMCID: PMC9104784 DOI: 10.3390/ijms23094751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Sclerostin, a glycoprotein encoded by the SOST gene, is mainly produced by mature osteocytes and is a critical regulator of bone formation through its inhibitory effect on Wnt signaling. Osteocytes are differentiated osteoblasts that form a vast and highly complex communication network and orchestrate osteogenesis in response to both mechanical and hormonal cues. The three most commonly described pathways of SOST gene regulation are mechanotransduction, Wnt/β-catenin, and steroid signaling. Downregulation of SOST and thereby upregulation of local Wnt signaling is required for the osteogenic response to mechanical loading. This review covers recent findings concerning the identification of SOST, in vitro regulation of SOST gene expression, structural and functional properties of sclerostin, pathophysiology, biological variability, and recent assay developments for measuring circulating sclerostin. The three-dimensional structure of human sclerostin was generated with the AlphaFold Protein Structure Database applying a novel deep learning algorithm based on the amino acid sequence. The functional properties of the 3-loop conformation within the tertiary structure of sclerostin and molecular interaction with low-density lipoprotein receptor-related protein 6 (LRP6) are also reviewed. Second-generation immunoassays for intact/biointact sclerostin have recently been developed, which might overcome some of the reported methodological obstacles. Sclerostin assay standardization would be a long-term objective to overcome some of the problems with assay discrepancies. Besides the use of age- and sex-specific reference intervals for sclerostin, it is also pivotal to use assay-specific reference intervals since available immunoassays vary widely in their methodological characteristics.
Collapse
|
5
|
Cucchi D, Menon A, Galliera E, Messina C, Zanini B, Marazzi MG, Massaccesi L, Compagnoni R, Corsi Romanelli MM, Randelli P. A Prospective Assessment of Periprosthetic Bone Mineral Density and Osteoimmunological Biomarkers Variations After Total Knee Replacement Surgery. J Clin Densitom 2019; 22:86-95. [PMID: 30072203 DOI: 10.1016/j.jocd.2018.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Aseptic loosening is a major cause of premature failure of total knee replacement (TKR). Variations in periprosthetic bone mineral density (BMD) and osteoimmunological biomarkers levels could help to quantify prosthesis osteointegration and predict early aseptic loosening. The gene expression of 5 selected osteoimmunological biomarkers was evaluated in tibial plateau bone biopsies by real-time polymerase chain reaction and changes in their serum levels after TKR were prospectively evaluated with enzyme-linked immunosorbent assay for 1 yr after surgery. These variations were correlated to changes in periprosthetic BMD. Sixteen patients were evaluated. A statistically significant decrease in serum levels of Sclerostin (p = 0.0135) was observed immediately after surgery. A specular pattern was observed between dickkopf-related protein 1 and osteoprotegerin expression. No statistically significant changes were detectable in the other study biomarkers. Periprosthetic BMD did not change significantly across the duration of the follow-up. Prosthetic knee surgery has an impact on bone remodeling, in particular on sclerostin expression. Although not showing statistically significant changes, in the patterns of dickkopf-related protein 1, osteoprotegerin, and the ligand of the receptor activator of nuclear factor kappa-B symmetries and correspondences related to the biological activities of these proteins could be identified. Variation in osteoimmunological biomarkers after TKR surgery can help in quantifying prosthesis osteointegration.
Collapse
Affiliation(s)
- Davide Cucchi
- Department of Orthopaedics and Trauma Surgery, Universitätsklinikum Bonn, Bonn 53127, Germany; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy.
| | - Alessandra Menon
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan 20122, Italy
| | - Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; IRCCS Galeazzi Orthopaedic Institute, Milan 20161, Italy
| | - Carmelo Messina
- Department of Diagnostic and Interventional Radiology, IRCCS Galeazzi Orthopaedic Institute, Milan 20161, Italy
| | - Beatrice Zanini
- 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan 20122, Italy
| | - Monica Gioia Marazzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy
| | - Luca Massaccesi
- Department of Biomedical, Surgical and Oral Science, Università degli Studi di Milano, Milan 20133, Italy
| | - Riccardo Compagnoni
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan 20122, Italy
| | - Massimiliano M Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; U.O.C SMEL-1 Patologia Clinica, IRCCS Policlinico San Donato, Milan 20097, Italy
| | - Pietro Randelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy; 1° Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan 20122, Italy
| |
Collapse
|
6
|
Glendenning P, Chubb SP, Vasikaran S. Clinical utility of bone turnover markers in the management of common metabolic bone diseases in adults. Clin Chim Acta 2018; 481:161-170. [DOI: 10.1016/j.cca.2018.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
7
|
Valenti MT, Dalle Carbonare L, Mottes M. Role of microRNAs in progenitor cell commitment and osteogenic differentiation in health and disease (Review). Int J Mol Med 2018; 41:2441-2449. [PMID: 29393379 DOI: 10.3892/ijmm.2018.3452] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/09/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are considered 'micro- managers of gene expression' and awareness of their fundamental role in the control of biological functions is constantly increasing. Bone formation and homeostasis are complex processes involving the differentiation and interaction of various cell types. Several miRNAs have been shown to be involved in different pathways and stages in the regulation of normal and abnormal bone formation and turnover. This present review focuses on the involvement of miRNAs in terms of their effect on the commitment of bone marrow mesenchymal stem cells towards osteogenesis, adipogenesis and chondrogenesis, respectively. The miRNAs involved in regulating osteoblast, chondroblast and osteoclast activity, are also taken into consideration, as are their interactions. miRNA expression levels, which may differ significantly in healthy versus pathological conditions, can be readily monitored and represent useful biomarkers. Several studies have suggested that miRNAs offer potential as useful biomarkers of bone pathologies, including osteoporosis and osteosarcoma. The development of efficient methods of delivering miRNA mimics or miRNA inhibitors into specific cells remains a challenge for novel therapeutic applications in the field of personalized medicine.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Medicine, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona I‑37134, Italy
| | - Luca Dalle Carbonare
- Department of Medicine, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona I‑37134, Italy
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona I‑37134, Italy
| |
Collapse
|
8
|
Fuentes-Calvo I, Usategui-Martín R, Calero-Paniagua I, Moledo-Pouso C, García-Ortiz L, Pino-Montes JD, González-Sarmiento R, Martínez-Salgado C. Influence Of Angiogenic Mediators And Bone Remodelling In Paget´s Disease Of Bone. Int J Med Sci 2018; 15:1210-1216. [PMID: 30123059 PMCID: PMC6097267 DOI: 10.7150/ijms.26580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023] Open
Abstract
Paget´s disease of bone (PDB) is characterized by increased bone resorption followed by an excessive compensatory bone formation, with an abnormal bone structure with altered mechanical properties. Pagetic bone also has a higher vascularization and marrow fibrosis. Despite of pagetic bone being a highly vascularized tissue, there are no studies on the plasma levels of angiogenic mediators in the different states of the disease; moreover, the effect of PDB treatment on plasma levels of these angiogenic mediators is not very well known. The aim of this study was to analyse plasma levels of cytokines implicated in the increased bone turnover (OPG, RANKL, sclerostin) and hypervascularization (VEGF, PGF, ENG) observed in PDB and their evolution and response to zoledronic acid treatment in 70 PDB patients, 29 with an active disease measured by plasma alkaline phosphatase (ALP). Plasma ALP concentration was higher in active PDB than in inactive PDB patients, whereas there were no differences in OPG, RANKL, sclerostin, VEGF, PGF and ENG plasma levels between active and inactive PDB patients. ALP decreased at 3 and 12 months after zoledronic acid treatment. RANKL levels were reduced and sclerostin levels were increased after 12 months of treatment. PGF levels were lower 12 months after zoledronic acid treatment, whereas there were no differences in plasma VEGF and ENG after zoledronic acid treatment. Summarizing, zoledronic acid treatment is associated to decreases in plasma levels of ALP, RANKL, sclerostin and P1GF in active PDB patients. This treatment may reduce bone turnover and might reduce the pathological vascularisation typical of pagetic bone.
Collapse
Affiliation(s)
- Isabel Fuentes-Calvo
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ricardo Usategui-Martín
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Molecular Medicine Unit, Department of Medicine, University of Salamanca and Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | | | - Cristina Moledo-Pouso
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Luis García-Ortiz
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Research Unit, Primary Care Centre of La Alamedilla, Salamanca, Spain
| | - Javier Del Pino-Montes
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Metabolic Bone Unit, University Hospital of Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Molecular Medicine Unit, Department of Medicine, University of Salamanca and Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, Salamanca, Spain
| | - Carlos Martínez-Salgado
- Translational Research on Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Institute of Health Sciences Studies of Castilla y Leon (IECSCYL), Research Unit, University Hospital of Salamanca, Salamanca, Spain
| |
Collapse
|
9
|
Polyzos SA, Makras P, Anastasilakis AD, Mintziori G, Kita M, Papatheodorou A, Kokkoris P, Terpos E. Periostin and sclerostin levels in juvenile Paget's disease. ACTA ACUST UNITED AC 2017; 14:269-271. [PMID: 29263750 DOI: 10.11138/ccmbm/2017.14.2.269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Juvenile Paget's disease (JPD) is a rare, autosomal recessive disorder featuring markedly increased serum alkaline phosphatase activity, indicative of greatly accelerated bone turnover throughout the skeleton. The main aim of this study was to evaluate circulating periostin and sclerostin levels in two adult patients with mild JPD (due to "Balkan" mutation). We measured periostin and sclerostin levels in a previously described woman and a newly diagnosed man with JPD, and 10 apparently healthy individuals, matched (1:5) to JPD patients for gender, age and body mass index. Sclerostin levels were similar between JPD patients and controls. Periostin levels were about 2.5 times higher in JPD patients. Periostin and sclerostin levels were negatively correlated (rs= -0.63; p=0.03). In conclusion, a trend towards higher periostin levels was observed in JPD patients, whereas sclerostin levels were similar to controls.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Department of Endocrinology, Ippokration General Hospital, Thessaloniki, Greece
| | - Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | | | | | - Marina Kita
- Department of Endocrinology, Ippokration General Hospital, Thessaloniki, Greece
| | | | - Panagiotis Kokkoris
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, University of Athens School of Medicine, Athens, Greece
| |
Collapse
|