1
|
Chen X, Wang W, Xue J. Efficacy and safety of iguratimod combined with celecoxib in active axial spondyloarthritis: a randomized, double-blind, placebo-controlled study. Scand J Rheumatol 2024; 53:420-427. [PMID: 38832489 DOI: 10.1080/03009742.2024.2346411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE To assess the efficacy and safety of iguratimod in adult patients with active axial spondyloarthritis (axSpA). METHOD This randomized, double-blind, placebo-controlled clinical trial lasted for 28 weeks. Patients with axSpA were randomized 1:1 to receive iguratimod 25 mg twice daily or a placebo. All patients also took celecoxib 200 mg twice daily for the first 4 weeks and on demand from 4 to 28 weeks. The primary endpoints were ASAS20 at 4 weeks and the non-steroidal anti-inflammatory drug (NSAID) index at 28 weeks. Other assessment variables included ASAS40, ASAS5/6 response rates, Spondyloarthritis Research Consortium of Canada (SPARCC) scores, and adverse events. RESULTS In total, 35 patients completed the study and were included for analyses. The median (interquartile range) NSAID index was 43.8 (34.9-51.8) in the iguratimod group, which is significantly lower than 68.9 (42.5-86.4) in the placebo group (p = 0.025). ASAS response rates and changes in disease activity scores were similar between the iguratimod and placebo groups. Patients in the iguratimod group had more improvement in median (interquartile range) SPARCC scores for sacroiliac joints than did those in the placebo group [71% (54-100%) vs 40% (0-52%), p = 0.006]. Iguratimod combined with celecoxib was not associated with a greater risk of adverse effects than was monotherapy with celecoxib. No severe adverse events occurred. CONCLUSIONS In the treatment of active axSpA, iguratimod has a potential NSAID-sparing effect, and may also reduce magnetic resonance imaging-assessed bone marrow oedema in sacroiliac joints. Iguratimod provides an additional treatment option for patients with active axSpA.Clinical trial registration numberChiCTR2000029112, Chinese Clinical Trial Registry (http://www.chictr.org.cn).
Collapse
Affiliation(s)
- X Chen
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - W Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - J Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
2
|
Long Z, Zeng L, Yang K, Chen J, Luo Y, Dai CC, He Q, Deng Y, Ge A, Zhu X, Hao W, Sun L. A systematic review and meta-analysis of the efficacy and safety of iguratimod in the treatment of inflammatory arthritis and degenerative arthritis. Front Pharmacol 2024; 15:1440584. [PMID: 39449973 PMCID: PMC11499590 DOI: 10.3389/fphar.2024.1440584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Objective To assess the efficacy and safety of iguratimod (IGU) in the treatment of inflammatory arthritis and degenerative arthritis. Methods Initially, randomized controlled trials (RCTs) on using IGU in treating inflammatory arthritis and degenerative arthritis were systematically gathered from various databases up to February 2024. Subsequently, two researchers independently screened the literature, extracted data, assessed the risk of bias in included studies, and conducted a meta-analysis using RevMan 5.4 software. Results Fifty-four RCTs involving three inflammatory arthritis were included, including ankylosing spondylitis (AS), osteoarthritis (OA), and rheumatoid arthritis (RA). For AS, the meta-analysis results showed that IGU may decrease BASDAI (SMD -1.68 [-2.32, -1.03], P < 0.00001) and BASFI (WMD -1.29 [-1.47, -1.11], P < 0.00001); IGU may also decrease inflammatory factor [ESR: (WMD -10.33 [-14.96, -5.70], P < 0.0001); CRP: (WMD -10.11 [-14.55, -5.66], P < 0.00001); TNF-α: (WMD -6.22 [-7.97, -4.47], P < 0.00001)]. For OA, the meta-analysis results showed that IGU may decrease VAS (WMD -2.20 [-2.38, -2.01], P < 0.00001) and WOMAC (WMD -7.27 [-12.31, -2.24], P = 0.005); IGU may also decrease IL-6 (WMD -8.72 [-10.00, -7.45], P < 0.00001). For RA, the meta-analysis results showed that IGU may improve RA remission rate [ACR20: (RR 1.18 [1.02, 1.35], P = 0.02); ACR50: (RR 1.32 [1.05, 1.64], P = 0.02); ACR70: (RR 1.44 [1.02, 2.04], P = 0.04)] and decrease DAS28 (WMD -0.92 [-1.20, -0.63], P < 0.00001); IGU may also decrease inflammatory factors [CRP: (SMD -1.36 [-1.75, -0.96], P < 0.00001); ESR: (WMD -9.09 [-11.80, -6.38], P < 0.00001); RF: (SMD -1.21 [-1.69, -0.73], P < 0.00001)]. Regarding safety, adding IGU will not increase the incidence of adverse events. Conclusion IGU might emerge as a promising and secure therapeutic modality for addressing AS, OA, and RA. Systematic Review Registration Identifier PROSPERO: CRD42021289249.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD, United States
- Fischell Department of Bioengineering, A.James Clark School of Engineering, University of Maryland, College Park, MD, United States
| | - Qi He
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Ying Deng
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Anqi Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | | | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| |
Collapse
|
3
|
Zeng L, Hu P, Zhang Y, Li M, Zhao Y, Li S, Luo A. Macrophage migration inhibitor factor (MIF): Potential role in cognitive impairment disorders. Cytokine Growth Factor Rev 2024; 77:67-75. [PMID: 38548489 DOI: 10.1016/j.cytogfr.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 06/22/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine in the immune system, participated in both innate and adaptive immune responses. Except from immune cells, MIF is also secreted by a variety of non-immune cells, including hematopoietic cells, endothelial cells (ECs), and neurons. MIF plays a crucial role in various diseases, such as sepsis, rheumatoid arthritis, acute kidney injury, and neurodegenerative diseases. The role of MIF in the neuropathogenesis of cognitive impairment disorders is emphasized, as it recruits multiple inflammatory mediators, leading to activating microglia or astrocyte-derived neuroinflammation. Furthermore, it contributes to the cell death of neurons and ECs with the binding of apoptosis-inducing factor (AIF) through parthanatos-associated apoptosis-inducing factor nuclease (PAAN) / MIF pathway. This review comprehensively delves into the relationship between MIF and the neuropathogenesis of cognitive impairment disorders, providing a series of emerging MIF-targeted pharmaceuticals as potential treatments for cognitive impairment disorders.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengchao Hu
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Zhang
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Mingyue Li
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 44100, China
| | - Yilin Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Zeng L, He Q, Deng Y, Li Y, Chen J, Yang K, Luo Y, Ge A, Zhu X, Long Z, Sun L. Efficacy and safety of iguratimod in the treatment of rheumatic and autoimmune diseases: a meta-analysis and systematic review of 84 randomized controlled trials. Front Pharmacol 2023; 14:1189142. [PMID: 38143490 PMCID: PMC10740187 DOI: 10.3389/fphar.2023.1189142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/21/2023] [Indexed: 12/26/2023] Open
Abstract
Objective: To evaluate efficacy and safety of iguratimod (IGU) in the treatment of rheumatic and autoimmune diseases. Methods: Databases such as Pubmed, Embase, Sinomed were searched (as of July 2022) to collect randomized controlled trials (RCTs) of IGU in the treatment of rheumatic and autoimmune diseases. Two researchers independently screened the literature, extracted data, assessed the risk of bias of the included literature, and performed meta-analysis using RevMan 5.4 software. Results: A total of 84 RCTs and 4 types of rheumatic and autoimmune diseases [rheumatoid arthritis (RA), ankylosing spondylitis (AS), primary Sjögren's syndrome (PSS) and Autoimmune disease with interstitial pneumonia]. Forty-three RCTs reported RA and showed that IGU + MTX therapy can improve ACR20 (RR 1.45 [1.14, 1.84], p = 0.003), ACR50 (RR 1.80 [1.43, 2.26], p < 0.0000), ACR70 (RR 1.84 [1.27, 2.67], p = 0.001), DAS28 (WMD -1.11 [-1.69, -0.52], p = 0.0002), reduce ESR (WMD -11.05 [-14.58, -7.51], p < 0.00001), CRP (SMD -1.52 [-2.02, -1.02], p < 0.00001), RF (SMD -1.65 [-2.48, -0.82], p < 0.0001), and have a lower incidence of adverse events (RR 0.84 [0.78, 0.91], p < 0.00001) than the control group. Nine RCTs reported AS and showed that IGU can decrease the BASDAI score (SMD -1.62 [-2.20, -1.05], p < 0.00001), BASFI score (WMD -1.07 [-1.39, -0.75], p < 0.00001), VAS (WMD -2.01 [-2.83, -1.19], p < 0.00001), inflammation levels (decreasing ESR, CRP and TNF-α). Thirty-two RCTs reported PSS and showed that IGU can reduce the ESSPRI score (IGU + other therapy group: WMD -1.71 [-2.44, -0.98], p < 0.00001; IGU only group: WMD -2.10 [-2.40, -1.81], p < 0.00001) and ESSDAI score (IGU + other therapy group: WMD -1.62 [-2.30, -0.94], p < 0.00001; IGU only group: WMD -1.51 [-1.65, -1.37], p < 0.00001), inhibit the inflammation factors (reduce ESR, CRP and RF) and increase Schirmer's test score (IGU + other therapy group: WMD 2.18 [1.76, 2.59], p < 0.00001; IGU only group: WMD 1.55 [0.35, 2.75], p = 0.01); The incidence of adverse events in IGU group was also lower than that in control group (IGU only group: RR 0.66 [0.48, 0.98], p = 0.01). Three RCTs reported Autoimmune disease with interstitial pneumonia and showed that IGU may improve lung function. Conclusion: Based on current evidence, IGU may be a safe and effective therapy for RA, AS, PSS and autoimmune diseases with interstitial pneumonia. Systematic Review Registration: (CRD42021289489).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Ying Deng
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Junpeng Chen
- Hunan University of Science and Technology, Xiangtan, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
5
|
Wang S, Yu J, Yang J, Ge Y, Tian J. Effects of iguratimod on inflammatory factors and apoptosis of submandibular gland epithelial cells in NOD mice. Sci Rep 2023; 13:18205. [PMID: 37875724 PMCID: PMC10597989 DOI: 10.1038/s41598-023-45529-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
Non-obese diabetic (NOD) mice were taken as primary Sjögren's syndrome (pSS) model mice to examine the therapeutic impact of iguratimod (IGU) on inflammatory factors levels and apoptosis of submandibular epithelial cells, and provide experimental basis for the treatment of pSS by iguratimod. Twenty-four NOD murine models were divided into the model, high-dose (IGU 30 mg/kg) and low-dose (IGU 10 mg/kg) groups, eight mice per group. The normal control group comprised eight C57B/L mice. From 8 weeks of age, the NOD mice were administered IGU by intragastric gavage administration every day for 8 weeks; their water consumption, saliva secretion, submandibular gland, and spleen indices were measured. The levels of serum inflammatory factor (IL-1β, TNF-α, IL-6, and IL-17) were evaluated, and Bax, caspase-3, and Bcl-2 levels were detected. The histological alterations in the submandibular glands were discovered. IGU can reduce the water intake of NOD mice (p < 0.01), increase the saliva secretion and the submandibular gland index (p < 0.01); reduce the spleen index and the serum inflammatory factors (p < 0.01); improve the pathological tissue damage and cell apoptosis of the submandibular gland (p < 0.05). IGU can reduce the expression levels of inflammatory mediators in the serum and the extent of lymphocyte infiltration and apoptosis in submandibular gland epithelial cells. It can also regulate apoptosis-related protein expression, thereby improving the secretory function of exocrine glands.
Collapse
Affiliation(s)
- Shuying Wang
- Affiliated Nanhua Hospital, University of South China, Hengyang, 421000, Hunan, China
| | - Jiake Yu
- Department of Rheumatology and Immunology, The 2nd Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Jie Yang
- Department of Rheumatology and Immunology, The 2nd Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Yan Ge
- Department of Rheumatology and Immunology, The 2nd Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The 2nd Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
6
|
Long Z, Zeng L, He Q, Yang K, Xiang W, Ren X, Deng Y, Chen H. Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases. Front Immunol 2023; 14:1150661. [PMID: 37809072 PMCID: PMC10552782 DOI: 10.3389/fimmu.2023.1150661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren 's syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod's unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Xiang Ren
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Denis A, Sztejkowski C, Arnaud L, Becker G, Felten R. The 2023 pipeline of disease-modifying antirheumatic drugs (DMARDs) in clinical development for spondyloarthritis (including psoriatic arthritis): a systematic review of trials. RMD Open 2023; 9:e003279. [PMID: 37507210 PMCID: PMC10387652 DOI: 10.1136/rmdopen-2023-003279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVES The objective of this systematic review was to provide an overview of current developments and potentially available therapeutic options for spondyloarthritis (SpA) in the coming years. METHODS We conducted a systematic review of 17 national and international clinical trial databases for all disease-modifying antirheumatic drugs (DMARDs) for SpA that are already marketed, in clinical development or withdrawn. The search was performed on February 2023 with the keywords "spondyloarthritis", "ankylosing spondylitis" and "psoriatic arthritis". For each molecule, we only considered the study at the most advanced stage of clinical development. RESULTS Concerning axial SpA (axSpA), a total of 44 DMARDs were identified: 6 conventional synthetic DMARDs (csDMARDs), 27 biological DMARDs (bDMARDs) and 11 targeted synthetic DMARDs (tsDMARDs). Among the 18 targeted treatments (b+tsDMARDs) in current development, corresponding trials reached phase I (n=1), II (n=10) and III (n=7). Ten molecules are IL-17 inhibitors, two Janus kinase (JAK) inhibitors and two granulocyte-macrophage colony-stimulating factor inhibitors; four have another mode of action. Concerning psoriatic arthritis (PsA), 44 DMARDs were identified: 5 csDMARDs, 27 bDMARDs and 12 tsDMARDs. Among the 15 molecules in current development, corresponding trials reached phase II (n=8) and III (n=7). Six molecules are JAK inhibitors, six IL-17 inhibitors and one an IL-23 inhibitor; two have another mode of action. CONCLUSION This systematic review identified 18 and 15 molecules in clinical development for axSpA and PsA, respectively, which suggests a strengthening of the therapeutic arsenal in the coming years. However, with so many DMARDs but low target diversity, we will need to develop strategies or biomarkers to help clinicians make informed treatment decisions.
Collapse
Affiliation(s)
- Agathe Denis
- Service de Rhumatologie de Hautepierre, RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Cédric Sztejkowski
- Service de Rhumatologie de Hautepierre, RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Arnaud
- Service de Rhumatologie de Hautepierre, RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Guillaume Becker
- Pôle Pharmacie-Pharmacologie, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Renaud Felten
- Service de Rhumatologie de Hautepierre, RESO, Centre de Référence des Maladies Autoimmunes Systémiques Rares Est Sud-Ouest, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Centre d'Investigation Clinique, Inserm 1434, INSERM, Strasbourg, France
| |
Collapse
|
8
|
Fang Y, Liu J, Xin L, Jiang H, Guo J, Li X, Wang F, He M, Han Q, Huang D. Radix Salvia miltiorrhiza for Ankylosing Spondylitis: Determining Potential Inflammatory Molecular Targets and Mechanism Using Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3816258. [PMID: 36147634 PMCID: PMC9489373 DOI: 10.1155/2022/3816258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022]
Abstract
Radix Salvia miltiorrhiza (RSM) is widely used for the clinical improvement of inflammatory diseases. However, the actions of RSM in the treatment of ankylosing spondylitis (AS) have not been fully explored. Therefore, this study was designed to use retrospective clinical data mining approach to understand the effects of RSM on AS-related immuno-inflammatory processes, use network pharmacology to predict therapeutic targets of RSM, and to further investigate the pharmacological molecular mechanism in vitro. RSM treatment has a long-term correlation with the improvement of AS-related immuno-inflammatory indicators through computational models. We established protein-protein interaction networks, conducted KEGG analysis to enrich significant TNF pathways, and finally obtained three core targets of RSM in the treatment of AS, namely, prostaglandin endoperoxide synthase 2 (PTGS2), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). Screening of RSM active ingredients with node degree greater than 20 yielded cryptotanshinone and tanshinone IIA, and previous studies have reported their anti-inflammatory effects. In vitro, both cryptotanshinone and tanshinone IIA significantly inhibited the expressions of PTGS2, IL-6, and TNF-α in peripheral blood mononuclear cells in AS patients. In conclusion, cryptotanshinone and tanshinone IIA, which are the active components of RSM, may inhibit the activation of TNF signaling pathway in AS patients by downregulating the expression of PTGS2, IL-6, and TNF-α. These findings illustrate that RSM may be a promising therapeutic candidate for AS, but further validation is required.
Collapse
Affiliation(s)
- Yanyan Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230038, China
| | - Ling Xin
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Hui Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Jinchen Guo
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China
| | - Xu Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230038, China
| | - Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230038, China
| | - Mingyu He
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230038, China
| | - Qi Han
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230038, China
| | - Dan Huang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
- Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, Anhui 230038, China
| |
Collapse
|
9
|
Hang Z, Wei J, Zheng M, Gui Z, Chen H, Sun L, Fei S, Han Z, Tao J, Wang Z, Tan R, Gu M. Iguratimod Attenuates Macrophage Polarization and Antibody-Mediated Rejection After Renal Transplant by Regulating KLF4. Front Pharmacol 2022; 13:865363. [PMID: 35614941 PMCID: PMC9125033 DOI: 10.3389/fphar.2022.865363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: This study aimed to explore the effect and mechanism of iguratimod (IGT) on M1 macrophage polarization and antibody-mediated rejection (ABMR) after renal transplant.Methods: Bioinformatics analysis was performed using three public databases derived from the GEO database. Sprague–Dawley (SD) rats were pre-sensitized with donors of Wistar rats in skin transplantation and a rat renal transplant ABMR model was established from the donors to skin pre-sensitized recipients. Subsequently, IGT was treated on the ABMR model. Routine staining and immunofluorescence (IF) staining were performed to observe the pathological changes in each group and flow cytometry was performed to detect the changes of DSA titers in peripheral blood. In addition, bone-marrow-derived macrophage (BMDM) was extracted and interfered with IGT to explore the effect of IGT in vivo. PCR, IF staining, and Western blot were used to detect the expression of related genes and proteins.Results: Bioinformatics analysis revealed that several immune cells were significantly infiltrated in the ABMR allograft, while M1 macrophage was noticed with the most significance. Results of IF staining and PCR proved the findings of the bioinformatics analysis. Based on this, IGT was observed to significantly attenuate the degree of peritubular capillary vasculitis and arteriolitis in the rat renal transplant ABMR model, whereas it decreases the expression of C4d and reduces the titer of DSA. Results in vitro suggested that M1 macrophage-related transcripts and proteins were significantly reduced by the treatment of IGT in a dose- and time-dependent manner. Furthermore, IGT intervention could remarkably decrease the expression of KLF4.Conclusion: Polarization of M1 macrophages may aggravate ABMR after renal transplant by promoting DSA-mediated endothelial cell injury, and IGT may attenuate the pathogenesis of ABMR by targeting KLF4.
Collapse
Affiliation(s)
- Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jintao Wei
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Wang, ; Min Gu, ; Ruoyun Tan,
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Wang, ; Min Gu, ; Ruoyun Tan,
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Wang, ; Min Gu, ; Ruoyun Tan,
| |
Collapse
|
10
|
Harjacek M. Immunopathophysiology of Juvenile Spondyloarthritis (jSpA): The "Out of the Box" View on Epigenetics, Neuroendocrine Pathways and Role of the Macrophage Migration Inhibitory Factor (MIF). Front Med (Lausanne) 2021; 8:700982. [PMID: 34692718 PMCID: PMC8526544 DOI: 10.3389/fmed.2021.700982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of related seronegative inflammatory disorders sharing common symptoms. Although it mainly affects children and adolescents, it often remains active during adulthood. Genetic and environmental factors are involved in its occurrence, although the exact underlying immunopathophysiology remains incompletely elucidated. Accumulated evidence suggests that, in affected patients, subclinical gut inflammation caused by intestinal dysbiosis, is pivotal to the future development of synovial-entheseal complex inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose of this review is to discuss and emphasize the role of epigenetics, neuroendocrine pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis of the role of decreased NLRP3 gene expression and possibly MIF in the early phases of jSpA development. The decreased NLRP3 gene expression in the latter, due to hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the role of MIF in the complex innate, adaptive cellular and main effector cytokine network, Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical need, I suggest possible new drug targets with the aim to ultimately improve treatment efficacy and long-term outcome of jSpA patients.
Collapse
Affiliation(s)
- Miroslav Harjacek
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Ceribelli A, Motta F, Vecellio M, Isailovic N, Ciccia F, Selmi C. Clinical Trials Supporting the Role of the IL-17/IL-23 Axis in Axial Spondyloarthritis. Front Immunol 2021; 12:622770. [PMID: 34149686 PMCID: PMC8206811 DOI: 10.3389/fimmu.2021.622770] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
The term spondyloarthritis (SpA) encompasses a heterogeneous group of inflammatory musculoskeletal diseases with several common genetic background and clinical features, including the possible involvement of the axial skeleton with peripheral mono- or oligo- arthritis and frequently coexisting skin, eye and intestinal manifestations. When the sacroiliac joints or other parts of the spine or thoracic wall are predominantly affected at magnetic resonance or X-ray imaging with inflammatory back pain, the disease is classified as axial SpA and the therapeutic choices are significantly different compared to cases of peripheral arthritis. Moving from the narrow effectiveness and safety profiles of non-steroidal anti-inflammatory drugs, there has been a significant research effort aimed at identifying new treatments based on our better understanding of the pathogenesis of SpA. Indeed, in parallel with the solid data demonstrating that IL-17 and IL-23 are key cytokines in the development of enthesitis and spondylitis, monoclonal antibodies interfering with this pathway have been developed for the treatment of axial SpA. Furthermore, the IL-17/IL-23 axis is key to extra-articular manifestations such as inflammatory bowel disease, uveitis, and psoriasis which are frequent comorbidities of SpA. Currently available drugs act through these mechanisms recognizing IL-23 and targeting IL-17, such as secukinumab and ixekizumab. These therapeutic approaches are now envisioned in the international treatment recommendations for psoriatic arthritis with an axial phenotype as well as for ankylosing spondylitis (AS). We will provide herein a concise comprehensive overview of the clinical evidence supporting the use of these and other drugs acting on IL-23 and IL-17 in axial SpA.
Collapse
Affiliation(s)
- Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano (Mi), Italy
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano (Mi), Italy
| | - Matteo Vecellio
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
| | - Francesco Ciccia
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano (Mi), Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano (Mi), Italy
| |
Collapse
|