1
|
Abouloifa H, Khodaei N, Rokni Y, Karboune S, Brasca M, D'Hallewin G, Salah RB, Saalaoui E, Asehraou A. The prebiotics (Fructo-oligosaccharides and Xylo-oligosaccharides) modulate the probiotic properties of Lactiplantibacillus and Levilactobacillus strains isolated from traditional fermented olive. World J Microbiol Biotechnol 2020; 36:185. [PMID: 33215291 DOI: 10.1007/s11274-020-02961-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/11/2020] [Indexed: 11/24/2022]
Abstract
This study aimed to examine the influence of two prebiotics, fructo-oligosaccharides (FOS) and xylo-oligosaccharides (XOS), on probiotic properties (resistance to low pH and bile salt, hydrophobicity and auto-aggregation), metabolites production, and antimicrobial activity of probiotic Lactiplantibacillus (L. pentosus S42 and L. plantarum S61) and Levilactobacillus (L. brevis S27) strains isolated from fermented olive. The results demonstrated the ability of strains to ferment XOS more than FOS as a sole carbon source, resulting in pH reduction. The prebiotics (FOS and XOS) significantly increased (p < 0.05) their survival in gastro-intestinal conditions (low pH and 0.3% of bile salts), as well as their hydrophobicity, auto-aggregation and production of proteins, compared to glucose (control). The major organic acids produced by Lactiplantibacillus and Levilactobacillus strains, were oxalic, malic and lactic acids from FOS, XOS and glucose, respectively. No antimicrobial activity was observed from cell-free supernatant (CFS) of Lactiplantibacillus and Levilactobacillus strains obtained from FOS. In the presence of XOS the organic acids, produced by Lactiplantibacillus and Levilactobacillus strains, were more diverse with high contents, and exhibited higher antifungal and antibacterial activities, more than that of FOS and glucose. The combination of L. plantarum S61 and XOS demonstrated the highest inhibition zones ranges of 20.7-22.2 mm against pathogenic bacteria and 29.2-30 mm against yeasts. This combination can be used in production of antifungal preservatives and pharmaceuticals, against pathogenic and spoilage yeasts.
Collapse
Affiliation(s)
- Houssam Abouloifa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Nastaran Khodaei
- Department of Food Science and Agricultural Chemistry, McGill University 21, Macdonald Campus, 111 Lakeshore, Ste Anne de Bellevue, QC, H9X 3V9, Canada
| | - Yahya Rokni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, McGill University 21, Macdonald Campus, 111 Lakeshore, Ste Anne de Bellevue, QC, H9X 3V9, Canada
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, Via Celoria 2, 20133, Milano, Italy
| | - Guy D'Hallewin
- Institute of Sciences of Food Production, National Research Council of Italy, Traversa la Crucca, 3 Loc. Baldinca, 07100, Sassari, Italy
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Ennouamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.
| |
Collapse
|
2
|
Koh WY, Utra U, Ahmad R, Rather IA, Park YH. Evaluation of probiotic potential and anti-hyperglycemic properties of a novel Lactobacillus strain isolated from water kefir grains. Food Sci Biotechnol 2018; 27:1369-1376. [PMID: 30319846 DOI: 10.1007/s10068-018-0360-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
A total of eight strains of lactic acid bacteria were isolated from water kefir grains and assessed for their in vitro α-glucosidase inhibitory activity. Lactobacillus mali K8 demonstrated significantly higher inhibition as compared to the other strains, thus was selected for in vitro probiotic potential characterization, antibiotic resistance, hemolytic activity and adaptation to pumpkin fruit puree. L. mali K8 demonstrated tolerance to pH 2.5 and resisted the damaging effects of bile salts, pepsin and pancreatin, comparable to that of Lactobacillus rhamnosus GG ATCC 53103 (reference strain). Lack of hemolytic activity and susceptibility to the five standard antibiotics indicated the safety of the K8 strain. This strain showed singular properties to be used as starters in the pumpkin fruit puree fermentation. These preliminary in vitro tests indicated the safety and functionality of the K8 strain and its potential as a probiotic candidate.
Collapse
Affiliation(s)
- Wee Yin Koh
- 1Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Uthumporn Utra
- 1Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Rosma Ahmad
- 2Bioprocess Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Irfan A Rather
- 3Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Ha Park
- 3Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|