Avci FG, Prasun T, Wendisch VF. Metabolic engineering for microbial production of sugar acids.
BMC Biotechnol 2025;
25:36. [PMID:
40361067 PMCID:
PMC12076931 DOI:
10.1186/s12896-025-00973-7]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Carbohydrates including sugar acids are commonly used as carbon sources in microbial biotechnology. These sugar acids are themselves desirable and often overlooked targets for biobased production since they find applications in a broad range of industries, examples include food, construction, medical, textile, and polymer industries. Different stages of oxidation for natural sugar acids can be distinguished. Oxidation of the aldehyde group yields aldonic acids, oxidation of the primary hydroxy group leads to uronic acids, and both oxidations combined yield aldaric acids. While the chemical oxidation of sugars to their acid forms often is a one-pot reaction under harsh conditions, their biosynthesis is much more delicate. Bio-based production can involve enzymatic conversion, whole-cell biotransformation, and fermentation. Generally, the in vivo approaches are preferred because they are less resource-intensive than enzymatic conversion. Metabolic engineering plays a crucial role in optimizing microbial strains for efficient sugar acid production. Strategies include pathway engineering to overexpress key enzymes involved in sugar oxidation, deletion of competing pathways to enhance the precursor availability and eliminate the product consumption, cofactor balancing for efficient redox reactions, and transporter engineering to facilitate precursor import or sugar acid export. Synthetic biology tools, such as CRISPR-Cas and dynamic regulatory circuits, have further improved strain development by enabling precise genetic modifications and adaptive control of metabolic fluxes. The usage of plant biomass hydrolysates for bio-based production further adds to the environmental friendliness of the in vivo approaches. This review highlights the different approaches for the production of C5 and C6 sugar acids, their applications, and their catabolism in microbes.
Collapse