1
|
Bhusal M, Sharma K, Magar AB, Pant J, Sharma KR. Chemical analysis and biological activities on solvent extracts from different parts of Rhus chinensis mill. Nat Prod Res 2024:1-7. [PMID: 39094015 DOI: 10.1080/14786419.2024.2387831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The present research is focused on the preparation of a variety of solvent extracts using different parts of Rhus chinensis Mill. for the estimation of phytochemicals and to perform biological activities. The highest phenolic and flavonoid contents were recorded as 141.48 ± 0.67 mg GAE/g in methanol root extract and 54.34 ± 0.28 mg QE/g in ethyl acetate root extract. Ethyl acetate root extract displayed an IC50 of 7.83 ± 0.18 µg/mL in the DPPH assay. TPC and TFC were found moderately correlated with antioxidant activity. The root and leaf extracts showed antibacterial activities comparable to those of standard drugs against the gram-positive and gram-negative bacteria. The MIC and MBC for root extract against Staphylococcus aureus were 7.8125 mg/mL and 15.625 mg/mL respectively. Similarly, the MIC and MBC for leaf extract against Escherichia coli were 15.625 mg/mL and 31.25 mg/mL respectively.
Collapse
Affiliation(s)
- Manisha Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kamana Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Akash Budha Magar
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Jyoti Pant
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
2
|
Protective Effect of Rhus chinensis Mill. Fruits on 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine-Induced Cholestasis in Mice via Ameliorating Oxidative Stress and Inflammation. Nutrients 2022; 14:nu14194090. [PMID: 36235742 PMCID: PMC9573408 DOI: 10.3390/nu14194090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
This study focused on the preventive effects of the extracts of Rhus chinensis Mill. (RCM) fruits on cholestasis induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in mice. The results showed that RCM extracts could significantly ameliorate DDC-induced cholestasis via multiple mechanisms, including (1) alleviating liver damage via enhancing antioxidant capacity, such as increasing the contents of glutathione, superoxide dismutase, and catalase and inhibiting the levels of malondialdehyde; (2) preventing liver inflammation by suppressing NF-κB pathway and reducing proinflammatory cytokines secretion (e.g., tumor necrosis factor-α, interleukin-1β, and interleukin-6); (3) inhibiting liver fibrosis and collagen deposition by regulating the expression of transforming growth factor-β and α-smooth muscle actin; (4) modulating abnormal bile acid metabolism through increasing the expression of bile salt export pump and multidrug resistance-associated protein 2. This study was the first to elucidate the potential preventive effect of RCM extracts on DDC-induced cholestasis in mice from multiple pathways, which suggested that RCM fruits could be considered as a potential dietary supplement to prevent cholestasis.
Collapse
|
4
|
Li M, Wang A, Zhang Y, Han T, Guan L, Fan D, Liu J, Xu Y. A comprehensive review on ethnobotanical, phytochemical and pharmacological aspects of Rhus chinensis Mill. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115288. [PMID: 35430289 DOI: 10.1016/j.jep.2022.115288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhus chinensis Mill., firstly recorded as herbal medicine in Shan Hai Jing, have been used for thousands of years to treat various diseases. AIM OF THIS REVIEW This review targets on the ethnomedicinal applications of R. chinensis and to gather the phytochemical, pharmacological and toxicological data which support the therapeutic potential of R. chinensis in treatment on different diseases, with emphasis on the naturally occurring compounds and detailed pharmacological developments. MATERIALS AND METHODS The information of R. chinensis was collected based on a variety of popular databases such as Scifinder, PubMed, Web of Science, ScienceDirect, Springer, Wiley, ACS, CNKI, Baidu Scholar, Google Scholar and other published materials (books and Ph.D. and M. Sc. Dissertations). The keywords "Rhus chinensis", "Rhus amela", "Rhus javanica", "Rhus osbeckii", "Rhus semialata", and "Schinus indicus" were applied to search the literature related in this review. RESULTS 152 natural compounds of R. chinensis belong to different classes are presented in this review, including flavonoids, lignans, coumarins, simple phenolics, urushiols, tannins, triterpenoids, steroids and other types of constituents. Among them, flavonoids, lignans, and triterpenoids are most frequently reported components. The pharmacological effects of R. chinensis were numerous and complicated, including anti-viral, anti-bacterial, anti-diarrheal, hepatoprotective, anti-proliferation, enzyme-inhibiting, anti-oxidants and so on. CONCLUSION In order to discover more compounds with novel structures to both enrich chemical context of genus Rhus and expand the variety of constituents, the phytochemical research is urgent and indispensable. Anti-diarrhea, the most widely application of R. chinensis traditionally, is insufficient in underlying mechanism exploration. And for other activities, in-depth studies on the mechanism of pharmacological effects in vivo and in vitro are both needed. Meanwhile, pharmacokinetics, toxicology, quality control and preclinical and clinical data are urgent to assess the rationale and safety of the medicinal and food application of R. chinensis.
Collapse
Affiliation(s)
- Meichen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Andong Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, PR China.
| | - Yunqiang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Tingting Han
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Lu Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Dongxue Fan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jianyu Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Yongnan Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Woo H, Kim H, Shin S, Shin JH, Ryu D, Park D, Jung E. Rhus semialata M. extract ameliorate para-phenylenediamine-induced toxicity in keratinocytes. Toxicol Rep 2020; 8:96-105. [PMID: 33437652 PMCID: PMC7786012 DOI: 10.1016/j.toxrep.2020.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
para-Phenylediamine (PPD), a major component of hair dyeing ingredients, can induce allergenic sensitization and exert mutagenic, tumorigenic and cytotoxic effect. In this study, we determined the cytotoxic effect of PPD on human keratinocytes and evaluated the protective effect of Rhus semialata M. extracts (RSE) on PPD induced cytotoxicity for the first time. We observed that RSE is a strong inhibitory agent against PPD-induced toxicity in human keratinocytes. The results indicated that RSE pretreatment significantly could suppress PPD induced cytotoxic effects, including decrease of cell viability, accumulation in subG1 phase of cells, and relocation of phosphatidylserine on keratinocytes. Also, we found that PPD caused cytotoxicity was associated with mitochondrial membrane potential loss and subsequent activation of caspase and PARP degradation. However, pretreatment of RSE showed preventive activities against PPD induced mitochondrial membrane potential loss and ROS production in keratinocytes. In conclusion, the results of present study suggest that RSE was able to protect the skin from several cytotoxic effects of PPD and could be a meaningful material in many industries using PPD.
Collapse
Key Words
- Apoptosis
- DCFH-DA, 2',7'-dichlorodihydrofluorescein diacetate
- DMEM, Dulbecco’s modified Eagle’s medium
- DMSO, Dimethyl sulfoxide
- DiOC6, 3,3'dihexyloxacarbocyanine iodide
- FBS, Fetal bovine serum
- Keratinocytes
- MTT, 3-[4,5-Dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide
- Mitochondrial damage
- PI, Propidium iodide
- PPD, para-Phenylenediamine
- ROS, Reactive oxygen species
- RSE, Rhus semialata M extracts
- Rhus semialata M
- para-Phenylenediamine
Collapse
Affiliation(s)
- Hyunju Woo
- BioSpectrum Life Science Institute, U-TOWER 18th FL, 767, Sinsu-Ro, Suji-Gu, Yongin-Si, Gyeonggi-Do, 16827, Republic of Korea
| | - Hayeon Kim
- BioSpectrum Life Science Institute, U-TOWER 18th FL, 767, Sinsu-Ro, Suji-Gu, Yongin-Si, Gyeonggi-Do, 16827, Republic of Korea
| | - Seoungwoo Shin
- BioSpectrum Life Science Institute, U-TOWER 18th FL, 767, Sinsu-Ro, Suji-Gu, Yongin-Si, Gyeonggi-Do, 16827, Republic of Korea
| | - Jong Heon Shin
- BioSpectrum Life Science Institute, U-TOWER 18th FL, 767, Sinsu-Ro, Suji-Gu, Yongin-Si, Gyeonggi-Do, 16827, Republic of Korea
| | - Dehun Ryu
- BioSpectrum Life Science Institute, U-TOWER 18th FL, 767, Sinsu-Ro, Suji-Gu, Yongin-Si, Gyeonggi-Do, 16827, Republic of Korea
| | - Deokhoon Park
- BioSpectrum Life Science Institute, U-TOWER 18th FL, 767, Sinsu-Ro, Suji-Gu, Yongin-Si, Gyeonggi-Do, 16827, Republic of Korea
| | - Eunsun Jung
- BioSpectrum Life Science Institute, U-TOWER 18th FL, 767, Sinsu-Ro, Suji-Gu, Yongin-Si, Gyeonggi-Do, 16827, Republic of Korea
| |
Collapse
|