1
|
Li N, Zhu X, Zhang H, Yang X, Shao M, Cui S, Lin C. Exploring the Target Genes of Fucosylated Chondroitin Sulfate in Treating Lung Adenocarcinoma Based on the Integration of Bioinformatics Analysis, Molecular Docking, and Experimental Verification. ACS OMEGA 2024; 9:46312-46322. [PMID: 39583738 PMCID: PMC11579779 DOI: 10.1021/acsomega.4c07295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Fucosylated chondroitin sulfate (FCS), extracted from sea cucumbers' body walls, has been found to inhibit the proliferation of lung adenocarcinoma (LUAD) cells. However, there have been few studies of the associated drug targets. This study combined bioinformatics analysis and molecular docking to screen the main targets of FCS intervention in LUAD. Moreover, an experimental validation was performed. First, we downloaded the LUAD gene data set from The Cancer Genome Atlas (TCGA) database and the cisplatin (DDP) resistance gene data set of LUAD A549 cells from the Gene Expression Omnibus (GEO) database. Nine significant genes (PLK1, BUB1, CDK1, CDC20, CCNB1, BUB1B, KIF11, CCNB2, and DLAGP5) were identified by bioinformatics analysis, and these nine genes overlapped in both data sets. Then, molecular docking results showed that FCS had a better affinity with target proteins BUB1 and PLK1. Further experimental verification revealed that FCS inhibited the growth of A549 cells and increased the sensitivity of A549 cells to DDP. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that A549 cells treated with FCS exhibited down-regulated BUB1 and PLK1 mRNA expression. At the same time, FCS+DDP treatment resulted in a more significant reduction in BUB1 and PLK1 mRNA expression than DDP or FCS treatment alone. These findings reveal potential targets of FCS for LUAD and provide clues for the development of FCS as a potential anticancer agent.
Collapse
Affiliation(s)
- Nana Li
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xinhong Zhu
- Department
of International Medicine, Qingdao Municipal
Hospital Group, Qingdao 266071, China
| | - Hua Zhang
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaohui Yang
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingju Shao
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shichao Cui
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cunzhi Lin
- Department
of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
2
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Fan XM, Huang JY, Ling XM, Wei W, Su WB, Zhang YW. A Highly Active Chondroitin Sulfate Lyase ABC for Enzymatic Depolymerization of Chondroitin Sulfate. Polymers (Basel) 2022; 14:polym14091770. [PMID: 35566938 PMCID: PMC9100776 DOI: 10.3390/polym14091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 11/16/2022] Open
Abstract
Enzymatic preparation of low-molecular-weight chondroitin sulfate (LMWCS) has received increasing attention. In this work, a chondroitin sulfate lyase ABC (Chon-ABC) was successfully cloned, expressed, and characterized. The Km and Vmax of the Chon-ABC were 0.54 mM and 541.3 U mg−1, respectively. The maximal activity was assayed as 500.4 U mg−1 at 37 °C in pH 8.0 phosphate buffer saline. The half-lives of the Chon-ABC were 133 d and 127 min at 4 °C and 37 °C, respectively. Enzymatic preparation of LMWCS was performed at room temperature for 30 min. The changes between the substrate and product were analyzed with mass spectrometry (MS), high-performance liquid chromatography (HPLC), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR). Overall, the Chon-ABC from Bacteroides thetaiotaomicron is competitive in large-scale enzymatic preparation of LMWCS for its high activity, stability, and substrate specificity.
Collapse
|
4
|
Pomin VH, Vignovich WP, Gonzales AV, Vasconcelos AA, Mulloy B. Galactosaminoglycans: Medical Applications and Drawbacks. Molecules 2019; 24:E2803. [PMID: 31374852 PMCID: PMC6696379 DOI: 10.3390/molecules24152803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in multiple systems in addition to its widely studied anticoagulant action. Biomedical properties of GalAGs are directly dependent on the sugar composition, presence or lack of fucose branches, as well as sulfation patterns. Although research interest in GalAGs has increased considerably over the three last decades, perhaps motivated by the parallel progress of glycomics, serious questions concerning the effectiveness and potential side effects of GalAGs have recently been raised. Doubts have centered particularly on the beneficial functions of CS-based therapeutic supplements and the potential harmful effects of FCS as similarly observed for oversulfated chondroitin sulfate, as a contaminant of heparin. Unexpected components were also detected in CS-based pharmaceutical preparations. This review therefore aims to offer a discussion on (1) the current and potential therapeutic applications of GalAGs, including those of unique features extracted from marine sources, and (2) the potential drawbacks of this class of molecules when applied to medicine.
Collapse
Affiliation(s)
- Vitor H Pomin
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA.
| | - William P Vignovich
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Alysia V Gonzales
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677-1848, USA
| | - Ariana A Vasconcelos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Barbara Mulloy
- Imperial College, Department of Medicine, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
5
|
Chondroitin Sulfate-Degrading Enzymes as Tools for the Development of New Pharmaceuticals. Catalysts 2019. [DOI: 10.3390/catal9040322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chondroitin sulfates are linear anionic sulfated polysaccharides found in biological tissues, mainly within the extracellular matrix, which are degraded and altered by specific lyases depending on specific time points. These polysaccharides have recently acquired relevance in the pharmaceutical industry due to their interesting therapeutic applications. As a consequence, chondroitin sulfate (CS) lyases have been widely investigated as tools for the development of new pharmaceuticals based on these polysaccharides. This review focuses on the major breakthrough represented by chondroitin sulfate-degrading enzymes and their structures and mechanisms of function in addition to their major applications.
Collapse
|
6
|
Li J, Li S, Wu L, Yang H, Wei C, Ding T, Linhardt RJ, Zheng X, Ye X, Chen S. Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity. Carbohydr Polym 2018; 209:82-91. [PMID: 30732828 DOI: 10.1016/j.carbpol.2018.12.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
Fucosylated chondroitin sulfate from sea cucumber Isostichopus badionotus (fCS-Ib) was depolymerized with an ultrasound-accelerated, metal-free Fenton chemistry, relying on H2O2/ascorbic acid redox system. Fragments of different molecular weights were obtained at different reaction temperatures, ascorbic acid concentrations and ultrasonic intensities. The structures of two typical depolymerized fragments were evaluated using high-performance liquid chromatography (HPLC), infrared spectroscopy (IR), and nuclear magnetic resonance spectroscopy (NMR). The results showed that ultrasound enhanced the degradation efficiency of H2O2/ascorbic acid system mainly by disaggregating sulfated polysaccharide clusters and that free radicals induced depolymerization with no significant chemical changes in the backbone of fCS-Ib and with no obvious loss of fucose branches. The antitumor activity, using A549 lung cancer cells, showed that the ultrasound treated low molecular weight sulfated fragment enhanced proliferation-inhibitory and anti-migration effects, compared to native fCS-Ib. This was different from the anticoagulant activity of fCS-Ib, suggesting that the molecular weight change may cause a conformational transition and affect biological activity. We propose that combining ultrasound with non-metal Fenton chemistry as an effective method to prepare low molecular weight fCS fragments with potential applications as functional foods, antitumor drugs, and that these fCS fragments display negligible bleeding risk.
Collapse
Affiliation(s)
- Junhui Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shan Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Limei Wu
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Huifang Yang
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chaoyang Wei
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Ding
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Xingqian Ye
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|