1
|
Wang Y, Zhang D, Huang L, Zhang Z, Shi Q, Hu J, He G, Guo X, Shi H, Liang L. Uncovering the interactions between PME and PMEI at the gene and protein levels: Implications for the design of specific PMEI. J Mol Model 2023; 29:286. [PMID: 37610510 DOI: 10.1007/s00894-023-05644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
CONTEXT Pectin methylesterase inhibitor (PMEI) can specifically bind and inhibit the activity of pectin methylesterase (PME), which has been widely used in fruit and vegetable juice processing. However, the limited three-dimensional structure, unclear action mechanism, low thermal stability and biological activity of PMEI severely limited its application. In this work, molecular recognition and conformational changes of PME and PMEI were analyzed by various molecular simulation methods. Then suggestions were proposed for improving thermal stability and affinity maturation of PMEI through semi-rational design. METHODS Phylogenetic trees of PME and PMEI were established using the Maximum likelihood (ML) method. The results show that PME and PMEI have good sequence and structure conservation in various plants, and the simulated data can be widely adopted. In this work, MD simulations were performed using AMBER20 package and ff14SB force field. Protein interaction analysis indicates that H-bonds, van der Waals forces, and the salt bridge formed of K224 with ID116 are the main driving forces for mutual molecular recognition of PME and PMEI. According to the analyses of free energy landscape (FEL), conformational cluster, and motion, the association with PMEI greatly disrupts PME's dispersed functional motion mode and biological function. By monitoring the changes of residue contact number and binding free energy, IG35M/ IG35R: IT93F and IT113W/ IT113W: ID116W mutations contribute to thermal stability and affinity maturation of the PME-PMEI complex system, respectively. This work reveals the interaction between PME and PMEI at the gene and protein levels and provides options for modifying specific PMEI.
Collapse
Affiliation(s)
- Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Derong Zhang
- School of Marxism, Chengdu Vocational & Technical College of Industry, Chengdu, 610081, China
| | - Lifen Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Gang He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Xiaoqiang Guo
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
2
|
Leamy LJ, Zhang H, Li C, Chen CY, Song BH. A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics 2017; 18:18. [PMID: 28056769 PMCID: PMC5217241 DOI: 10.1186/s12864-016-3397-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/07/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cultivated soybean (Glycine max) is a major agricultural crop that provides a crucial source of edible protein and oil. Decreased amounts of saturated palmitic acid and increased amounts of unsaturated oleic acid in soybean oil are considered optimal for human cardiovascular health and therefore there has considerable interest by breeders in discovering genes affecting the relative concentrations of these fatty acids. Using a genome-wide association (GWA) approach with nearly 30,000 single nucleotide polymorphisms (SNPs), we investigated the genetic basis of protein, oil and all five fatty acid levels in seeds from a sample of 570 wild soybeans (Glycine soja), the progenitor of domesticated soybean, to identify quantitative trait loci (QTLs) affecting these seed composition traits. RESULTS We discovered 29 SNPs located on ten different chromosomes that are significantly associated with the seven seed composition traits in our wild soybean sample. Eight SNPs co-localized with QTLs previously uncovered in linkage or association mapping studies conducted with cultivated soybean samples, while the remaining SNPs appeared to be in novel locations. Twenty-four of the SNPs significantly associated with fatty acid variation, with the majority located on chromosomes 14 (6 SNPs) and seven (8 SNPs). Two SNPs were common for two or more fatty acids, suggesting loci with pleiotropic effects. We also identified some candidate genes that are involved in fatty acid metabolism and regulation. For each of the seven traits, most of the SNPs produced differences between the average phenotypic values of the two homozygotes of about one-half standard deviation and contributed over 3% of their total variability. CONCLUSIONS This is the first GWA study conducted on seed composition traits solely in wild soybean populations, and a number of QTLs were found that have not been previously discovered. Some of these may be useful to breeders who select for increased protein/oil content or altered fatty acid ratios in the seeds. The results also provide additional insight into the genetic architecture of these traits in a large sample of wild soybean, and suggest some new candidate genes whose molecular effects on these traits need to be further studied.
Collapse
Affiliation(s)
- Larry J Leamy
- Department of Biological Sciences, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Hengyou Zhang
- Department of Biological Sciences, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Changbao Li
- Double Haploid Optimization Group, Monsanto Company, Chesterfield, MO, 63017, USA
| | - Charles Y Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Bao-Hua Song
- Department of Biological Sciences, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
3
|
Bonavita A, Carratore V, Ciardiello MA, Giovane A, Servillo L, D'Avino R. Influence of pH on the Structure and Function of Kiwi Pectin Methylesterase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5866-76. [PMID: 27335009 DOI: 10.1021/acs.jafc.6b01718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pectin methylesterase is a pectin modifying enzyme that plays a key role in plant physiology. It is also an important quality-related enzyme in plant-based food products. The pectin methylesterase inhibitor (PMEI) from kiwifruit inhibits this enzyme activity and is widely used as an efficient tool for research purposes and also recommended in the context of fruit and vegetable processing. Using several methodologies of protein biochemistry, including circular dichroism and fluorescence spectroscopy, chemical modifications, direct protein-sequencing, enzyme activity, and bioinformatics analysis of the crystal structure, this study demonstrates that conformational changes occur in kiwi PMEI by the pH rising over 6.0 bringing about structure loosening, exposure, and cleavage of a natively buried disulfide bond, unfolding and aggregation, ultimately determining the loss of ability of kiwi PMEI to bind and inhibit PME. pH-induced structural changes are prevented when PMEI is already engaged in complex or is in a solution of high ionic strength.
Collapse
Affiliation(s)
| | - Vitale Carratore
- Institute of Biosciences and BioResources, C.N.R. , Napoli, Italy
| | | | - Alfonso Giovane
- Department of Biochemistry, Biophysics and General Pathology, Second University of Napoli , Napoli, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Napoli , Napoli, Italy
| | - Rossana D'Avino
- Institute of Biosciences and BioResources, C.N.R. , Napoli, Italy
| |
Collapse
|