1
|
Li L, Cao X, Huang J, Zhang T, Wu Q, Xiang P, Shen C, Zou L, Li J, Li Q. Effect of Pleurotus eryngii mycelial fermentation on the composition and antioxidant properties of tartary buckwheat. Heliyon 2024; 10:e25980. [PMID: 38404826 PMCID: PMC10884446 DOI: 10.1016/j.heliyon.2024.e25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.
Collapse
Affiliation(s)
- Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, 646000, China
| |
Collapse
|
2
|
Zhang S, Merino N, Okamoto A, Gedalanga P. Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microb Biotechnol 2018; 11:833-847. [PMID: 30014573 PMCID: PMC6116752 DOI: 10.1111/1751-7915.13300] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
Microbial consortia are capable of surviving diverse conditions through the formation of synergistic population-level structures, such as stromatolites, microbial mats and biofilms. Biotechnological applications are poised to capitalize on these unique interactions. However, current artificial co-cultures constructed for societal benefits, including biosynthesis, agriculture and bioremediation, face many challenges to perform as well as natural consortia. Interkingdom microbial consortia tend to be more robust and have higher productivity compared with monocultures and intrakingdom consortia, but the control and design of these diverse artificial consortia have received limited attention. Further, feasible research techniques and instrumentation for comprehensive mechanistic insights have only recently been established for interkingdom microbial communities. Here, we review these recent advances in technology and our current understanding of microbial interaction mechanisms involved in sustaining or developing interkingdom consortia for biotechnological applications. Some of the interactions among members from different kingdoms follow similar mechanisms observed for intrakingdom microbial consortia. However, unique interactions in interkingdom consortia, including endosymbiosis or interkingdom-specific cell-cell interactions, provide improved mitigation to external stresses and inhibitory compounds. Furthermore, antagonistic interactions among interkingdom species can promote fitness, diversification and adaptation, along with the production of beneficial metabolites and enzymes for society. Lastly, we shed light on future research directions to develop study methods at the level of metabolites, genes and meta-omics. These potential research methods could lead to the control and utilization of highly diverse microbial communities.
Collapse
Affiliation(s)
- Shu Zhang
- Global Research Center for Environment and Energy based on Nanomaterials ScienceNational Institute for Material Science1‐1 NamikiTsukubaIbarakiJapan
- Department of Molecular Microbiology and ImmunologyNorris Comprehensive Cancer CenterUniversity of Southern California1441 Eastlake StreetLos AngelesCA90033USA
- Present address:
Section of Infection and ImmunityHerman Ostrow School of DentistryUniversity of Southern CaliforniaCA90089‐0641USA
| | - Nancy Merino
- Earth‐Life Science InstituteTokyo Institute of Technology, 2‐12‐1‐I7E‐323Ookayama, Meguro‐kuTokyo 152‐8550Japan
- Department of Earth SciencesUniversity of Southern California, 835 Bloom Walk, SHS 562Los AngelesCA 90089‐0740USA
| | - Akihiro Okamoto
- Global Research Center for Environment and Energy based on Nanomaterials ScienceNational Institute for Material Science1‐1 NamikiTsukubaIbarakiJapan
| | - Phillip Gedalanga
- Department of Health ScienceCalifornia State University Fullerton, 800 North State College BoulevardFullertonCA 92831‐3599USA
| |
Collapse
|
3
|
Van Doan H, Doolgindachbaporn S, Suksri A. Effects of Eryngii mushroom (Pleurotus eryngii) and Lactobacillus plantarum on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1427-1440. [PMID: 27129725 DOI: 10.1007/s10695-016-0230-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 04/24/2016] [Indexed: 06/05/2023]
Abstract
This study was conducted to evaluate the effects of Eryngii mushroom, Pleurotus eryngii (PE), and Lactobacillus plantarum single or combined on growth, innate immune response and disease resistance of the Pangasius catfish, Pangasius bocourti. Two hundred forty fish were divided into four treatments, i.e., 0 g kg(-1) PE (Control, Diet 1), 3 g kg(-1) PE (Diet 2), 10(8) cfu g(-1) L. plantarum (Diet 3) and 3 g kg(-1) PE + 10(8) cfu g(-1) L. plantarum (Diet 4). Fish were culture in glass tanks with water volume approximately of 150 l, and each treatment had four replications with 15 fish per replication. Following 30, 60 and 90 days of the feeding trial, specific growth rate (SGR), feed conversion ratio (FCR), serum lysozyme, phagocytosis and respiratory burst activities were measured. SGR and FCR were significantly improved in fish fed supplemented diets after 90 days of the feeding trial. Serum lysozyme, phagocytosis and respiratory burst activity of fish were significantly stimulated by both PE and L. plantarum diets; however, the highest innate immune response was observed in fish fed synbiotic diet. At the end of the experiment, five fish were randomly selected for a challenge test against Aeromonas hydrophila. The post-challenge survival rate of the fish fed supplemented diets was significantly greater than the control treatment, and the highest post-challenge survival rate was observed in synbiotic diet. The results revealed that dietary supplementation of PE and L. plantarum stimulated growth, immunity and disease resistance of the P. bocourti.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Plant Sciences and Natural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Doolgindachbaporn
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Department of Plant Sciences and Natural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Amnuaysilpa Suksri
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Plant Sciences and Natural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|