1
|
Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera. Food Chem 2023; 412:135581. [PMID: 36731239 DOI: 10.1016/j.foodchem.2023.135581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Nelumbo nucifera Gaertn, commonly known as lotus, is a genus comprising perennial and rhizomatous aquatic plants, found throughout Asia and Australia. This review aimed to cover the biosynthesis of flavonoids, alkaloids, and lipids in plants and their types in different parts of lotus. This review also examined the physiological functions of bioactive compounds in lotus and the extracts from different organs of the lotus plant. The structures and identities of flavonoids, alkaloids, and lipids in different parts of lotus as well as their biosynthesis were illustrated and updated. In the traditional medicine systems and previous scientific studies, bioactive compounds and the extracts of lotus have been applied for treating inflammation, cancer, liver disease, Alzheimer's disease, etc. We suggest future studies to be focused on standardization of the extract of lotus, and their pharmacological mechanisms as drugs or functional foods. This review is important for the lotus-based food processing and application.
Collapse
|
2
|
Phytochemical Diversity and Antioxidant Potential of Natural Populations of Nelumbo nucifera Gaertn. throughout the Floristic Regions in Thailand. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030681. [PMID: 35163946 PMCID: PMC8840423 DOI: 10.3390/molecules27030681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Asian lotus has long been consumed as a food and herbal drug that provides several health benefits. The number of studies on its biological activity is significant, but research at the population level to investigate the variation in phytochemicals and biological activity of each population which is useful for a more efficient phytopharmaceutical application strategy remains needed. This present study provided the frontier results to fill-in this necessary gap to investigating the phytopharmaceutical potential of perianth and stamen, which represent an important part for Asian traditional medicines, from 18 natural populations throughout Thailand by (1) determining their phytochemical profiles, such as total contents of phenolic, flavonoid, and anthocyanin, and (2) determining the antioxidant activity of these natural populations using various antioxidant assays to examine different mechanisms. The result showed that Central is the most abundant floristic region. The stamen was higher in total phenolic and flavonoid contents, whereas perianth was higher in monomeric anthocyanin content. This study provided the first description of the significant correlation between phytochemical contents in perianth compared with stamen extracts, and indicated that flavonoids are the main phytochemical class. This analysis indicated that the stamen is a richer source of flavonoids than perianth, and provided the first report to quantify different flavonoids accumulated in stamen and perianth extracts under their native glycosidic forms at the population level. Various antioxidant assays revealed that major flavonoids from N. nucifera prefer the hydrogen atom transfer mechanism when quenching free radicals. The significant correlations between various phytochemical classes and the different antioxidant tests were noted by Pearson correlation coefficients and emphasized that the antioxidant capability of an extract is generally the result of complex phytochemical combinations as opposed to a single molecule. These current findings offer the alternative starting materials to assess the phytochemical diversity and antioxidant potential of N. nucifera for phytopharmaceutical sectors.
Collapse
|
3
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Temviriyanukul P, Sritalahareuthai V, Promyos N, Thangsiri S, Pruesapan K, Srinuanchai W, Nuchuchua O, Siriwan D, On-nom N, Suttisansanee U. The Effect of Sacred Lotus ( Nelumbo nucifera) and Its Mixtures on Phenolic Profiles, Antioxidant Activities, and Inhibitions of the Key Enzymes Relevant to Alzheimer's Disease. Molecules 2020; 25:E3713. [PMID: 32824050 PMCID: PMC7463813 DOI: 10.3390/molecules25163713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Sacred lotus (Nelumbo nucifera) has long been used as a food source and ingredient for traditional herbal remedies. Plant parts contain neuroprotective agents that interact with specific targets to inhibit Alzheimer's disease (AD). Organic solvents including methanol, ethyl acetate, hexane, and n-butanol, are widely employed for extraction of sacred lotus but impact food safety. Seed embryo, flower stalk, stamen, old leaf, petal, and leaf stalk of sacred lotus were extracted using hot water (aqueous extraction). The extractions were analyzed for their bioactive constituents, antioxidant and anti-AD properties as key enzyme inhibitory activities toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase 1 (BACE-1). Results showed that the sacred lotus stamen exhibited significant amounts of phenolics, including phenolic acids and flavonoids, that contributed to high antioxidant activity via both single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms, with anti-AChE, anti-BChE, and anti-BACE-1 activities. To enhance utilization of other sacred lotus parts, a combination of stamen, old leaf and petal as the three sacred lotus plant components with the highest phenolic contents, antioxidant activities, and enzyme inhibitory properties was analyzed. Antagonist interaction was observed, possibly from flavonoids-flavonoids interaction. Further in-depth elucidation of this issue is required. Findings demonstrated that an aqueous extract of the stamen has potential for application as a functional food to mitigate the onset of Alzheimer's disease.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Varittha Sritalahareuthai
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
| | - Natnicha Promyos
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
| | - Sirinapa Thangsiri
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
| | - Kanchana Pruesapan
- Plant Varieties Protection Division, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency(NSTDA), Klong Luang, Pathum Thani 12120, Thailand; (W.S.); (O.N.)
| | - Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency(NSTDA), Klong Luang, Pathum Thani 12120, Thailand; (W.S.); (O.N.)
| | - Dalad Siriwan
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Nattira On-nom
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand; (P.T.); (V.S.); (N.P.); (S.T.); (N.O.-n.)
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
5
|
Vo TS. Natural products targeting FcεRI receptor for anti-allergic therapeutics. J Food Biochem 2020; 44:e13335. [PMID: 32588463 DOI: 10.1111/jfbc.13335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/26/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
Mast cells and basophils are important contributors for development of allergic reactions. The activation of these cells via cross-linking of IgE bound to FcεRI by allergen causes the generation of allergic mediators and the reaction of immediate hypersensitivity. Obviously, FcεRI is considered as a key trigger of acute allergic responses. Consequently, FcεRI is regarded as a potential target for downregulation of allergic diseases. So far, numerous synthetic agents have been reported for inhibition of FcεRI expression and FcεRI-IgE interaction. Meanwhile, natural products have received much attention due to their efficacy and safety. Recently, numerous anti-allergic agents from natural products have been revealed as promising inhibitors of allergic reactions via inhibiting the expression of FcεRI subunits as well as blocking FcεRI activation. Thus, the present contribution is mainly focused to describe natural products targeting FcεRI receptor and to emphasize their applicable potential as anti-allergic foods. PRACTICAL APPLICATIONS: Phlorotannins, epigallocatechin-3-gallate, peptides, chitooligosaccharides, and other natural products have been revealed as potential inhibitors of allergic responses. These bioactive agents target to FcεRI receptor by inhibiting expression of FcεRI and blocking interaction of FcεRI-IgE. Hence, these compounds could be applied as functional ingredients of anti-allergic foods.
Collapse
Affiliation(s)
- Thanh Sang Vo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City, Vietnam
| |
Collapse
|
6
|
Sharma BR, Gautam LNS, Adhikari D, Karki R. A Comprehensive Review on Chemical Profiling ofNelumbo Nucifera: Potential for Drug Development. Phytother Res 2016; 31:3-26. [DOI: 10.1002/ptr.5732] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/28/2016] [Accepted: 09/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| | - Lekh Nath S. Gautam
- C. Eugene Bennett Department of Chemistry; West Virginia University; Morgantown WV 26506 USA
| | | | - Rajendra Karki
- Department of Oriental Medicine Resources, College of Natural Sciences; Mokpo National University; 61 Muan-gun Jeonnam 534-729 Korea
| |
Collapse
|