1
|
Bakshi S, Kanetkar P, Bunkar DS, Browne C, Paswan VK. Chlorella sp. as a promising protein source: insight to novel extraction techniques, nutritional and techno-functional attributes of derived proteins. Crit Rev Food Sci Nutr 2025:1-29. [PMID: 40244156 DOI: 10.1080/10408398.2025.2491646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Amidst the mounting environmental crises and ever-increasing global population, the quest for sustainable food production and resource utilization solutions has taken center stage. Microalgae, with Chlorella species at the forefront, present a promising avenue. They serve as a bountiful protein source and can be conveniently grown in waste streams, thereby tackling food security, environmental sustainability, and economic feasibility. This article embarks on a comprehensive journey through recent research on Chlorella by shedding light on its unique characteristics, its market value, cultivation techniques, and harvesting methods. It also delves into traditional and innovative extraction methods, underscoring the hurdles and breakthroughs in achieving high protein yields from the Chlorella biomass. Moreover, exploration of the protein's nutritional properties, bioactive peptides, and techno-functional attributes, enhance its potential for food applications. Further, this review also examines current market trends in consumer acceptance of this alternative protein and discusses strategies for reducing greenhouse gas emissions in their production. By providing invaluable insights into the current status and future prospects of Chlorella protein, it aspires to make a significant contribution to the ongoing dialogue on sustainable food production and resource management.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prajasattak Kanetkar
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Durga Shankar Bunkar
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Vinod Kumar Paswan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Khalid S, Chaudhary K, Aziz H, Amin S, Sipra HM, Ansar S, Rasheed H, Naeem M, Onyeaka H. Trends in extracting protein from microalgae Spirulina platensis, using innovative extraction techniques: mechanisms, potentials, and limitations. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39096052 DOI: 10.1080/10408398.2024.2386448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Microalgal, species are recognized for their high protein content, positioning them as a promising source of this macronutrient. Spirulina platensis, in particular, is noteworthy for its rich protein levels (70 g/100 g dw), which are higher than those of meat and legumes. Incorporating this microalgae into food can provide various benefits to human health due to its diverse chemical composition, encompassing high amount of protein and elevated levels of minerals, phenolics, essential fatty acids, and pigments. Conventional techniques employed for protein extraction from S. platensis have several drawbacks, prompting the exploration of innovative extraction techniques (IETs) to overcome these limitations. Recent advancements in extraction methods include ultrasound-assisted extraction, microwave-assisted extraction, high-pressure-assisted extraction, supercritical fluid extraction, pulse-electric field assisted extraction, ionic liquids assisted extraction, and pressurized liquid extraction. These IETs have demonstrated efficiency in enhancing protein yield of high quality while maximizing biomass utilization. This comprehensive review delves into the mechanisms, applications, and drawbacks associated with implementing IETs in protein extraction from S. platensis. Notably, these innovative methods offer advantages such as increased extractability, minimized protein denaturation, reduced solvent consumption, and lower energy consumption. However, safety considerations and the synergistic effects of combined extraction methods warrant further exploration and investigation of their underlying mechanisms.
Collapse
Affiliation(s)
- Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Humera Aziz
- Department of Agricultural Sciences, College of Agriculture and Environmental Sciences, Government College University, Faisalabad, Pakistan
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sara Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Hassan Mehmood Sipra
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Husnain Rasheed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Helen Onyeaka
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, Government College University, Faisalabad, Pakistan
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Lijassi I, Arahou F, El Habacha G, Wahby A, Benaich S, Rhazi L, Arahou M, Wahby I. Optimization and Characterization of Spirulina and Chlorella Hydrolysates for Industrial Application. Appl Biochem Biotechnol 2024; 196:1255-1271. [PMID: 37382791 DOI: 10.1007/s12010-023-04596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Chlorella and Spirulina are the most used microalgae mainly as powder, tablets, or capsules. However, the recent change in lifestyle of modern society encouraged the emergence of liquid food supplements. The current work evaluated the efficiency of several hydrolysis methods (ultrasound-assisted hydrolysis UAH, acid hydrolysis AH, autoclave-assisted hydrolysis AAH, and enzymatic hydrolysis EH) in order to develop liquid dietary supplements from Chlorella and Spirulina biomasses. Results showed that, EH gave the highest proteins content (78% and 31% for Spirulina and Chlorella, respectively) and also increased pigments content (4.5 mg/mL of phycocyanin and 12 µg/mL of carotenoids). Hydrolysates obtained with EH showed the highest scavenging activity (95-91%), allowing us, with the other above features, to propose this method as convenient for liquid food supplements development. Nevertheless, it has been shown that the choice of hydrolysis method depended on the vocation of the product to be prepared.
Collapse
Affiliation(s)
- Ibtissam Lijassi
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco.
| | - Fadia Arahou
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Ghizlane El Habacha
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Anass Wahby
- Laboratory of Water, Studies and Environmental Analysis, FLP, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Souad Benaich
- Physiology and Physiopathology Research Team, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Laila Rhazi
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Moustapha Arahou
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Imane Wahby
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| |
Collapse
|
4
|
Hui GT, Meng TK, Kassim MA. Green ultrasonication-assisted extraction of microalgae Chlorella sp. for polysaturated fatty acid (PUFA) rich lipid extract using alternative solvent mixture. Bioprocess Biosyst Eng 2023; 46:1499-1512. [PMID: 37580470 DOI: 10.1007/s00449-023-02917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P < 0.05). The highest crude lipid yield of 25.05 ± 0.924% was achieved using ethanol-2-MeTHF mixture (2:1, v/v) with a solvent-to-biomass ratio of 20:1 (v/w) at 60 °C for 25 min accompanying 100 W and 40 kHz. Ethanol-2-MeTHF-extracted lipids showed dominance in linoleic acid, α-linolenic acid, and palmitic acid. Overall this findings supported UAE using ethanol and 2-MeTHF as extraction solvents is a promising green alternative to conventional solvent extraction of lipids from microalgae.
Collapse
Affiliation(s)
- Goh Ting Hui
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Tan Kean Meng
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohd Asyraf Kassim
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
5
|
Optimization of Lipid Extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design. Molecules 2022; 27:molecules27206794. [PMID: 36296385 PMCID: PMC9608605 DOI: 10.3390/molecules27206794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
The present study uses the Taguchi method of experimental design to optimize lipid extraction from Spirulina spp. by ultrasound application and mechanical stirring. A Taguchi L9 orthogonal array was used to optimize various parameters, such as methanol: chloroform (M:C) ratio, biomass: solvent ratio, and extraction time for lipid extraction. The results were analyzed using the signal-to-noise (S/N) ratio and analysis of variance (ANOVA). The biomass: solvent ratio significantly influenced lipid content (p < 0.05) with 92.1% and 92.3% contributions to the lipid and S/N ratio data, respectively. The extraction time presented a contribution value of 5.0%, while the M:C ratio presented the most negligible contribution of 0.4% for S/N data. The optimum extraction conditions were: M:C ratio of 1:1, biomass: solvent ratio of 1:60, and extraction time of 30 min. The predominant fatty acids were palmitic acid (44.5%), linoleic acid (14.9%), and gamma-linolenic acid (13.4%). The confirmation experiments indicated a lipid content of 8.7%, within a 95% confidence interval, proving the Taguchi method’s effectiveness in optimizing the process parameters for lipid extraction.
Collapse
|
6
|
Evaluation of ultrasound assisted extraction of bioactive compounds from microalgae. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01347-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Dabbour M, Jiang H, Mintah BK, Wahia H, He R. Ultrasonic-assisted protein extraction from sunflower meal: Kinetic modeling, functional, and structural traits. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102824] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Osmotic shock pre-treatment of Chaetoceros muelleri wet biomass enhanced solvent-free lipid extraction and biogas production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Munawaroh HSH, Gumilar GG, Alifia CR, Marthania M, Stellasary B, Yuliani G, Wulandari AP, Kurniawan I, Hidayat R, Ningrum A, Koyande AK, Show PL. Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|