1
|
Marques da Silva M, Santana Moura YA, Leite AHP, Souza KLDS, Brandão Costa RMP, Nascimento TP, Porto ALF, Bezerra RP. Toxicological assays in the evaluation of safety assessment of fibrinolytic enzymes. Drug Chem Toxicol 2024; 47:1393-1403. [PMID: 39155645 DOI: 10.1080/01480545.2024.2367561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/18/2024] [Accepted: 06/08/2024] [Indexed: 08/20/2024]
Abstract
Cardiovascular diseases (CVDs) cause 30% of deaths each year, and in 2030, around 23.6 million people will die due to CVDs. The major challenge is to obtain molecules with minimal adverse reactions that can prevent and dissolve blood clots. In this context, fibrinolytic enzymes from diverse microorganism sources have been extensively investigated due to their potential to act directly and specifically on the fibrin clot, preventing side effects and performing potential thrombolytic effects. However, most researches focus on the purification and characterization of proteases, with little emphasis on the mechanism of action and pharmacological characteristics, including toxicity assays which are essential to assess safety and side effects. Therefore, this work aims to emphasize the importance of evaluations indicating the toxicological profile of fibrinolytic proteases through in vitro and in vivo tests. Both types of assays contribute as preclinical stage in drug development and are crucial for clinical applications. This scarcity creates arbitrary barriers to further studies. This work should further encourage the development of studies to ensure the safety and effectivity of fibrinolytic proteases.
Collapse
Affiliation(s)
- Marllyn Marques da Silva
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Yanara Alessandra Santana Moura
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | | | | | | | | | - Ana Lúcia Figueiredo Porto
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Raquel Pedrosa Bezerra
- Laboratório de Avanços em Biotecnologia de Proteínas e Tecnologia de Bioativos, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| |
Collapse
|
2
|
Liu R, Li T, Xu H, Yu G, Zhang T, Wang J, Sun Y, Bi Y, Feng X, Wu H, Zhang C, Sun Y. Systems biology strategy through integrating metabolomics and network pharmacology to reveal the mechanisms of Xiaopi Hewei Capsule improves functional dyspepsia. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123676. [PMID: 37329776 DOI: 10.1016/j.jchromb.2023.123676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Functional dyspepsia (FD) is one of the more common functional disorders, with a prevalence of 20-25 %. It seriously affects the quality life of patients. Xiaopi Hewei Capsule (XPHC) is a classic formula originated from the Chinese Miao minority. Clinical studies have demonstrated that XPHC can effectively alleviate the symptoms of FD, but the molecular mechanism has not been elucidated. The purpose of this work is to investigate the mechanism of XPHC on FD by integrating metabolomics and network pharmacology. The mice models of FD were established, and gastric emptying rate, small intestine propulsion rate, serum level of motilin and gastrin were evaluate to study the interventional effect of XPHC on FD. Next, a metabolomics strategy has been developed to screen differential metabolites and related metabolic pathways induced by XPHC. Then, prediction of active compounds, targets and pathways of XPHC in treating FD were carried out by commonly used network pharmacological method. Finally, two parts of the results were integrated to investigate therapeutic mechanism of XPHC on FD, which were preliminary validated based on molecular docking. Thus, twenty representative different metabolites and thirteen related pathways of XPHC in treating FD were identified. Most of these metabolites were restored using modulation after XPHC treatment. The results of the network pharmacology analysis showed ten crucial compounds and nine hub genes related to the treatment of FD with XPHC. The further integrated analysis focused on four key targets, such as albumin (ALB), epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF) and roto-oncogene tyrosine-protein kinase Src (SRC), and three representative biomarkers such as citric acid, L-leucine and eicosapentaenoic acid. Furthermore, molecular docking results showed that ten bioactive compounds from XPHC have good binding interactions with the four key genes. The functional enrichment analysis indicated that the potential mechanism of XPHC in treating FD was mainly associated with energy metabolism, amino acid metabolism, lipid metabolism, inflammatory reactions and mucosal repair. Our work confirms that network pharmacology-integrated metabolomics strategyis a powerful means to reveal the therapeutic mechanisms of XPHC improves FD, which contribute its further scientific research.
Collapse
Affiliation(s)
- Runhua Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Department of Pharmacy, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, China
| | - Tianyi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gengyuan Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Department of Pharmacy, Zigong First People's Hospital, Zigong, China.
| | - Yikun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|