1
|
Lalonde R, Strazielle C. One-Trial Appetitive Learning Tasks for Drug Targeting. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:680-686. [PMID: 37287290 DOI: 10.2174/1871527322666230607152758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
One-trial appetitive learning developed from one-trial passive avoidance learning as a standard test of retrograde amnesia. It consists of one learning trial followed by a retention test, in which physiological manipulations are presented. As in passive avoidance learning, food- or waterdeprived rats or mice finding food or water inside an enclosure are vulnerable to the retrograde amnesia produced by electroconvulsive shock treatment or the injection of various drugs. In one-trial taste or odor learning conducted in rats, birds, snails, bees, and fruit flies, there is an association between a food item or odorant and contextual stimuli or the unconditioned stimulus of Pavlovian conditioning. The odor-related task in bees was sensitive to protein synthesis inhibition as well as cholinergic receptor blockade, both analogous to results found on the passive avoidance response in rodents, while the task in fruit flies was sensitive to genetic modifications and aging, as seen in the passive avoidance response of genetically modified and aged rodents. These results provide converging evidence of interspecies similarities underlying the neurochemical basis of learning.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandoeuvre-les- Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA 7300), Medical School, University of Lorraine, 54500 Vandoeuvre-les- Nancy, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
2
|
Lu C, Gudowska A, Rutkowska J. What do zebra finches learn besides singing? Systematic mapping of the literature and presentation of an efficient associative learning test. Anim Cogn 2023; 26:1489-1503. [PMID: 37300600 PMCID: PMC10442275 DOI: 10.1007/s10071-023-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The process of learning in birds has been extensively studied, with a focus on species such as pigeons, parrots, chickens, and crows. In recent years, the zebra finch has emerged as a model species in avian cognition, particularly in song learning. However, other cognitive domains such as spatial memory and associative learning could also be critical to fitness and survival, particularly during the intensive juvenile period. In this systematic review, we provide an overview of cognitive studies on zebra finches, with a focus on domains other than song learning. Our findings indicate that spatial, associative, and social learning are the most frequently studied domains, while motoric learning and inhibitory control have been examined less frequently over 30 years of research. All of the 60 studies included in this review were conducted on captive birds, limiting the generalizability of the findings to wild populations. Moreover, only two of the studies were conducted on juveniles, highlighting the need for more research on this critical period of learning. To address this research gap, we propose a high-throughput method for testing associative learning performance in a large number of both juvenile and adult zebra finches. Our results demonstrate that learning can occur in both age groups, thus encouraging researchers to also perform cognitive tests on juveniles. We also note the heterogeneity of methodologies, protocols, and subject exclusion criteria applied by different researchers, which makes it difficult to compare results across studies. Therefore, we call for better communication among researchers to develop standardised methodologies for studying each cognitive domain at different life stages and also in their natural conditions.
Collapse
Affiliation(s)
- ChuChu Lu
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Beardsworth CE, Whiteside MA, Capstick LA, Laker PR, Langley EJG, Nathan R, Orchan Y, Toledo S, van Horik JO, Madden JR. Spatial cognitive ability is associated with transitory movement speed but not straightness during the early stages of exploration. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201758. [PMID: 33959338 PMCID: PMC8074888 DOI: 10.1098/rsos.201758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Memories about the spatial environment, such as the locations of foraging patches, are expected to affect how individuals move around the landscape. However, individuals differ in the ability to remember spatial locations (spatial cognitive ability) and evidence is growing that these inter-individual differences influence a range of fitness proxies. Yet empirical evaluations directly linking inter-individual variation in spatial cognitive ability and the development and structure of movement paths are lacking. We assessed the performance of young pheasants (Phasianus colchicus) on a spatial cognition task before releasing them into a novel, rural landscape and tracking their movements. We quantified changes in the straightness and speed of their transitory paths over one month. Birds with better performances on the task initially made slower transitory paths than poor performers but by the end of the month, there was no difference in speed. In general, birds increased the straightness of their path over time, indicating improved efficiency independent of speed, but this was not related to performance on the cognitive task. We suggest that initial slow movements may facilitate more detailed information gathering by better performers and indicates a potential link between an individual's spatial cognitive ability and their movement behaviour.
Collapse
Affiliation(s)
| | - Mark A. Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Lucy A. Capstick
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Philippa R. Laker
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ellis J. G. Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ran Nathan
- Movement Ecology Laboratory, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yotam Orchan
- Movement Ecology Laboratory, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 67798, Israel
| | - Jayden O. van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Joah R. Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
4
|
Langley EJG, Adams G, Beardsworth CE, Dawson DA, Laker PR, van Horik JO, Whiteside MA, Wilson AJ, Madden JR. Heritability and correlations among learning and inhibitory control traits. Behav Ecol 2020; 31:798-806. [PMID: 32821079 PMCID: PMC7428062 DOI: 10.1093/beheco/araa029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
To understand the evolution of cognitive abilities, we need to understand both how selection acts upon them and their genetic (co)variance structure. Recent work suggests that there are fitness consequences for free-living individuals with particular cognitive abilities. However, our current understanding of the heritability of these abilities is restricted to domesticated species subjected to artificial selection. We investigated genetic variance for, and genetic correlations among four cognitive abilities: inhibitory control, visual and spatial discrimination, and spatial ability, measured on >450 pheasants, Phasianus colchicus, over four generations. Pheasants were reared in captivity but bred from adults that lived in the wild and hence, were subject to selection on survival. Pheasant chicks are precocial and were reared without parents, enabling us to standardize environmental and parental care effects. We constructed a pedigree based on 15 microsatellite loci and implemented animal models to estimate heritability. We found moderate heritabilities for discrimination learning and inhibitory control (h2 = 0.17-0.23) but heritability for spatial ability was low (h2 = 0.09). Genetic correlations among-traits were largely positive but characterized by high uncertainty and were not statistically significant. Principle component analysis of the genetic correlation matrix estimate revealed a leading component that explained 69% of the variation, broadly in line with expectations under a general intelligence model of cognition. However, this pattern was not apparent in the phenotypic correlation structure which was more consistent with a modular view of animal cognition. Our findings highlight that the expression of cognitive traits is influenced by environmental factors which masks the underlying genetic structure.
Collapse
Affiliation(s)
- Ellis J G Langley
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Gracie Adams
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Deborah A Dawson
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, UK
| | - Philippa R Laker
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Joah R Madden
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, Washington Singer Labs, University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Boogert NJ, Madden JR, Morand-Ferron J, Thornton A. Measuring and understanding individual differences in cognition. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0280. [PMID: 30104425 DOI: 10.1098/rstb.2017.0280] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Individuals vary in their cognitive performance. While this variation forms the foundation of the study of human psychometrics, its broader importance is only recently being recognized. Explicitly acknowledging this individual variation found in both humans and non-human animals provides a novel opportunity to understand the mechanisms, development and evolution of cognition. The papers in this special issue highlight the growing emphasis on individual cognitive differences from fields as diverse as neurobiology, experimental psychology and evolutionary biology. Here, we synthesize this body of work. We consider the distinct challenges in quantifying individual differences in cognition and provide concrete methodological recommendations. In particular, future studies would benefit from using multiple task variants to ensure they target specific, clearly defined cognitive traits and from conducting repeated testing to assess individual consistency. We then consider how neural, genetic, developmental and behavioural factors may generate individual differences in cognition. Finally, we discuss the potential fitness consequences of individual cognitive variation and place these into an evolutionary framework with testable hypotheses. We intend for this special issue to stimulate researchers to position individual variation at the centre of the cognitive sciences.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Neeltje J Boogert
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| | - Joah R Madden
- Department of Psychology, Washington Singer Labs, University of Exeter, Exeter EX4 4QG, UK
| | - Julie Morand-Ferron
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Canada, K1N 6N5
| | - Alex Thornton
- Centre for Ecology and Conservation, Daphne du Maurier Building, University of Exeter, Penryn TR10 9FE, UK
| |
Collapse
|
6
|
Langley EJG, van Horik JO, Whiteside MA, Beardsworth CE, Madden JR. The relationship between social rank and spatial learning in pheasants, Phasianus colchicus: cause or consequence? PeerJ 2018; 6:e5738. [PMID: 30479883 PMCID: PMC6238775 DOI: 10.7717/peerj.5738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/11/2018] [Indexed: 01/13/2023] Open
Abstract
Individual differences in performances on cognitive tasks have been found to differ according to social rank across multiple species. However, it is not clear whether an individual’s cognitive performance is flexible and the result of their current social rank, modulated by social interactions (social state dependent hypothesis), or if it is determined prior to the formation of the social hierarchy and indeed influences an individual’s rank (prior attributes hypothesis). We separated these two hypotheses by measuring learning performance of male pheasants, Phasianus colchicus, on a spatial discrimination task as chicks and again as adults. We inferred adult male social rank from observing agonistic interactions while housed in captive multi-male multi-female groups. Learning performance of adult males was assayed after social rank had been standardised; by housing single males with two or four females. We predicted that if cognitive abilities determine social rank formation we would observe: consistency between chick and adult performances on the cognitive task and chick performance would predict adult social rank. We found that learning performances were consistent from chicks to adults for task accuracy, but not for speed of learning and chick learning performances were not related to adult social rank. Therefore, we could not support the prior attributes hypothesis of cognitive abilities aiding social rank formation. Instead, we found that individual differences in learning performances of adults were predicted by the number of females a male was housed with; males housed with four females had higher levels of learning performance than males housed with two females; and their most recent recording of captive social rank, even though learning performance was assayed while males were in a standardized, non-competitive environment. This does not support the hypothesis that direct social pressures are causing the inter-individual variation in learning performances that we observe. Instead, our results suggest that there may be carry-over effects of aggressive social interactions on learning performance. Consequently, whether early life spatial learning performances influence social rank is unclear but these performances are modulated by the current social environment and a male’s most recent social rank.
Collapse
Affiliation(s)
- Ellis J G Langley
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| | | | - Joah R Madden
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Kosarussavadi S, Pennington ZT, Covell J, Blaisdell AP, Schlinger BA. Across sex and age: Learning and memory and patterns of avian hippocampal gene expression. Behav Neurosci 2018; 131:483-491. [PMID: 29189019 DOI: 10.1037/bne0000222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Age-related decrements in cognitive ability have been proposed to stem from deteriorating function of the hippocampus. Many birds are long lived, especially for their relatively small body mass and elevated metabolism, making them a unique model of resilience to aging. Nevertheless, little is known about avian age-related changes in cognition and hippocampal physiology. We studied spatial cognition and hippocampal expression of the age-related gene, Apolipoprotein D (ApoD), and the immediate early gene Egr-1 in zebra finches at various developmental time points. In a first experiment, middle-aged adult males outperformed middle-aged females in learning correct food locations in a four-arm maze, but all birds remembered the task equally well after a 5- or 10-day delay. In a second experiment comparing young and old birds, aged birds showed minimal evidence for deterioration in spatial cognition or motivation relative to young birds, except that aged females showed less rapid gains in accuracy during spatial learning than young females. These findings indicate that sex differences in hippocampus-dependent spatial learning and decline with age are phylogenetically conserved. With respect to hippocampal gene expression, adult females expressed Egr-1 at significantly greater levels than males after memory retrieval, perhaps reflecting a neurobiological compensation. Contrary to mammals, ApoD expression was elevated in young zebra finches compared with aged birds. This may explain the near absence of decrements in spatial memory due to age, possibly indicating an alternative mechanism of managing oxidative stress in aged birds. (PsycINFO Database Record
Collapse
Affiliation(s)
- Saritha Kosarussavadi
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| | | | - Jeremy Covell
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| | | | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| |
Collapse
|
8
|
Shaw RC, Boogert NJ, Clayton NS, Burns KC. Wild psychometrics: evidence for ‘general’ cognitive performance in wild New Zealand robins, Petroica longipes. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Templeton CN, Laland KN, Boogert NJ. Does song complexity correlate with problem-solving performance in flocks of zebra finches? Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Beran MJ, McIntyre JM, Garland A, Evans TA. What counts for 'counting'? Chimpanzees, Pan troglodytes, respond appropriately to relevant and irrelevant information in a quantity judgment task. Anim Behav 2013; 85:987-993. [PMID: 23750039 DOI: 10.1016/j.anbehav.2013.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nonhuman animals quantify all manner of things, and the way in which this is done is fairly well understood. However, little research has been conducted to determine how they know what is or is not relevant in the instances in which they quantify stimuli. We assessed how four chimpanzees chose between two sets of food items when the items were distributed across separate spatial arrays. Each item was covered by a container, and then was revealed in sequence so that neither whole set was visible at one time. After all containers were revealed, some were revealed again. The chimpanzees should have ignored items that were seen a second time and instead enumerated each item only once. In another test, some of the items were transposed in location and then uncovered again. Here, the chimpanzees needed to recognize that the newly shown food items were ones they already had seen. Overall, the chimpanzees were successful in selecting the truly larger array of items despite these potential distracting re-presentations of items. Discrimination performance also reflected analogue magnitude estimation because comparisons of sets that differed by larger amounts were easier than comparisons that differed by smaller amounts. Thus, chimpanzee quantity judgments for nonvisible sets of items are inexact, but they include an aspect of control for determining when items are uniquely presented versus re-presented.
Collapse
Affiliation(s)
- Michael J Beran
- Language Research Center, Georgia State University, Atlanta, GA, U.S.A
| | | | | | | |
Collapse
|
11
|
Boogert NJ, Fawcett TW, Lefebvre L. Mate choice for cognitive traits: a review of the evidence in nonhuman vertebrates. Behav Ecol 2011. [DOI: 10.1093/beheco/arq173] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Herborn K, Alexander L, Arnold KE. Colour cues or spatial cues? Context-dependent preferences in the European greenfinch (Carduelis chloris). Anim Cogn 2010; 14:269-77. [DOI: 10.1007/s10071-010-0360-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 10/14/2010] [Accepted: 11/19/2010] [Indexed: 11/25/2022]
|
13
|
Larose K, Dubois F. Constraints on the Evolution of Reciprocity: An Experimental Test with Zebra Finches. Ethology 2010. [DOI: 10.1111/j.1439-0310.2010.01850.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Effects of forest age on fruit composition and removal in tropical bird-dispersed understorey trees. JOURNAL OF TROPICAL ECOLOGY 2009. [DOI: 10.1017/s0266467409006208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:Little is known about how land-use changes affect interspecific interactions such as fruit–frugivore mutualisms. Forest age could affect both fruit sugar concentrations via differences in light availability or disperser abundance, and fruit removal rates via differences in bird and plant community composition. We examined how these two factors are affected by forest age in a Costa Rican rain forest. We compared seven young-secondary forest species, seven old-growth forest species, andMiconia nervosagrowing in both forests. We measured sugar concentrations in fruits and manipulated the location of paired fruiting branches, measuring subsequent fruit removal. Sugar concentration means were on average 2.1 percentage points higher in young-secondary forest species than in old-growth forest species, but did not differ amongMiconia nervosafruits from the two forests. Fruit removal rates were higher in young-secondary forest for 86% of young-secondary forest species, 71% of old-growth forest species, and on average for both young-secondary and old-growth forestMiconia nervosaindividuals. Higher sugar concentrations in young-secondary forest plants could reflect stronger competition for dispersers, while experimental fruit removal results suggests the opposite patterns of competition; fruits are more likely to be removed by dispersers in young-secondary forest independent of fruit nutrient concentration.
Collapse
|
15
|
Boogert NJ, Giraldeau LA, Lefebvre L. Song complexity correlates with learning ability in zebra finch males. Anim Behav 2008. [DOI: 10.1016/j.anbehav.2008.08.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|