1
|
Ma Y, Kyuchukova D, Jiao F, Batsikadze G, Nitsche MA, Yavari F. The impact of temporal distribution on fear extinction learning. Int J Clin Health Psychol 2025; 25:100536. [PMID: 39877888 PMCID: PMC11770545 DOI: 10.1016/j.ijchp.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025] Open
Abstract
Fear extinction is the foundation of exposure therapy for anxiety and phobias. However, the stability of extinction memory diminishes over time, coinciding with fear recovery. To augment long-term extinction retention, the temporal distribution of extinction learning sessions is critical. This study investigated the effects of massed and spaced training (with short and long intervals) on extinction retention compared to a classic protocol. 120 healthy participants were recruited and randomly divided to massed training, spaced training with 20-minutes or 3-hours intervals, and a control group. The control group completed half the number of extinction trials compared to the other groups. The fear conditioning/extinction paradigm consisted of three consecutive days of fear acquisition, extinction, and recall, followed by a second recall one week later. Skin conductance response (SCR) and self-rating questionnaires (ratings of valence, arousal, and fear) were recorded and analyzed using mixed model ANOVAs. The results revealed that during the extinction phase, both massed and spaced protocols showed significantly lower SCRs compared to the control group, with massed training resulting in the largest effects. In the second recall, only the massed extinction group showed no significant difference in SCRs between threat and safety cues. The self-report assessments indicated that the massed extinction group showed furthermore lower arousal than the control group in the first recall. These results suggest that both massed and spaced training promote fear extinction learning, but only massed training improves long-term extinction retention. This study highlights the impact of the temporal distribution and trial number of extinction learning on extinction retention, offering insights for future research on improving fear extinction efficacy.
Collapse
Affiliation(s)
- Yuanbo Ma
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Dzheylyan Kyuchukova
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Germany
| | - Fujia Jiao
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
| | - Fatemeh Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
2
|
Vargas-Vargas IL, Pérez-Hernández E, González D, Rosetti MF, Contreras-Galindo J, Roldán-Roldán G. Evidence of long-term allocentric spatial memory in the Terrestrial Hermit Crab Coenobita compressus. PLoS One 2023; 18:e0293358. [PMID: 37883496 PMCID: PMC10602228 DOI: 10.1371/journal.pone.0293358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Spatial learning is a complex cognitive skill and ecologically important trait scarcely studied in crustaceans. We investigated the ability of the Pacific (Ecuadorian) hermit crab Coenobita compressus, to learn an allocentric spatial task using a palatable novel food as reward. Crabs were trained to locate the reward in a single session of eleven consecutive trials and tested subsequently, for short- (5 min) and long-term memory 1, 3 and 7 days later. Our results indicate that crabs were able to learn the location of the reward as they showed a reduction in the time required to find the food whenever it was present, suggesting a visuo-spatial and olfactory cue-guided task resolution. Moreover, crabs also remember the location of the reward up to 7 days after training using spatial cues only (without the food), as evidenced by the longer investigation time they spent in the learned food location than in any other part of the experimental arena, suggesting a visuo-spatial memory formation. This study represents the first description of allocentric spatial long-term memory in a terrestrial hermit crab.
Collapse
Affiliation(s)
- Ilse Lorena Vargas-Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Estefany Pérez-Hernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Francisco Rosetti
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto National de Psiquiatría, Ramón de la Fuente Muñiz, Mexico City, Mexico
| | | | - Gabriel Roldán-Roldán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Social context shapes cognitive abilities: associative memories are modulated by fight outcome and social isolation in the crab Neohelice granulata. Anim Cogn 2021; 24:1007-1026. [PMID: 33788037 PMCID: PMC8009927 DOI: 10.1007/s10071-021-01492-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Cognitive abilities of an animal can be influenced by distinct social experiences. However, the extent of this modulation has not been addressed in different learning scenarios: are all tasks similarly affected by social experiences? In the present study, we analyzed the effect of social dominance in aversive and appetitive memory processes in the crab Neohelice granulata. In addition, we studied the influence of social isolation on memory ability. Social dominance experiments consisted of an agonistic phase immediately followed by a memory phase. During the agonistic phase, matched pairs of male crabs were staged in 10-min encounters and the dominant or subordinate condition of each member of the dyad was determined. During the memory phase, crabs were trained to acquire aversive or appetitive memory and tested 24 h later. Results showed that the agonistic encounter can modulate long-term memory according to the dominance condition in such a way that memory retention of subordinates results higher than their respective dominant. Remarkably, this result was found for both aversive and appetitive memory tasks. In addition, we found that isolated animals showed no memory retention when compared with animals that remained grouped. Altogether this work emphasizes the importance of social context as a modulator of cognitive abilities.
Collapse
|
4
|
Loy I, Fernández-Victorero S, Muñiz-Moreno J. Renewal of conditioned tentacle lowering by circadian contextual cues in snails Cornu aspersum. Behav Processes 2020; 178:104144. [PMID: 32445853 DOI: 10.1016/j.beproc.2020.104144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/03/2020] [Accepted: 05/17/2020] [Indexed: 11/18/2022]
Abstract
Previous experiments using tentacle lowering conditioning in terrestrial snails Cornu aspersum have shown extinction and recovery of the conditioned response (CR) as a consequence of both inserting a delay between the extinction and test (spontaneous recovery) and of re-exposing the animal to the unconditioned stimulus after extinction (reinstatement). Two experiments that examined recovery of the CR due to a change in context (renewal effect) were carried out to continue this line of research. In Experiment 1, subjects received conditioning with an odour (CS) followed by extinction in the presence of another odour (CS + C), before being exposed to the original one (CS). In Experiment 2, conditioning and extinction of an odour CS took place in the presence of different circadian contextual cues (hour of the day and presence of light). The results showed that a return to the original context of conditioned training, after the extinction in a different context, either defined by an odour (Experiment 1) or by circadian cues (Experiment 2), produce a recovery of the CR compared to suitable control groups. These results can be interpreted as an instance of ABA renewal effect and they provide information about psychological mechanisms involved in extinction processes.
Collapse
Affiliation(s)
- Ignacio Loy
- Department of Psychology, University of Oviedo, Plaza the Feijoo s/n, 33003 Oviedo, Spain.
| | | | - Judit Muñiz-Moreno
- Department of Psychology, University of Oviedo, Plaza the Feijoo s/n, 33003 Oviedo, Spain
| |
Collapse
|
5
|
Piqueret B, Sandoz JC, d'Ettorre P. Ants learn fast and do not forget: associative olfactory learning, memory and extinction in Formica fusca. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190778. [PMID: 31312508 PMCID: PMC6599790 DOI: 10.1098/rsos.190778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Learning is a widespread phenomenon that allows behavioural flexibility when individuals face new situations. However, learned information may lose its value over time. If such a memory endures, it can be deleterious to individuals. The process of extinction allows memory updating when the initial information is not relevant anymore. Extinction is widespread among animals, including humans. We investigated associative appetitive learning in an ant species that is widely distributed in the Northern Hemisphere, Formica fusca. We studied acquisition and memory between 1 h and one week after conditioning, as well as the extinction process. Ants learn very rapidly, their memory lasts up to 3 days, decreases slowly over time and is highly resistant to extinction, even after a single conditioning trial. Using a pharmacological approach, we show that this single-trial memory critically depends on protein synthesis (long-term memory). These results indicate that individual ant workers of F. fusca show remarkable learning and memory performances. Intriguingly, they also show a strong resistance to updating learned associations. Resistance to extinction may be advantageous when the environment is stochastic and individuals need to switch often from one learned task to another.
Collapse
Affiliation(s)
- Baptiste Piqueret
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), University of Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| |
Collapse
|
6
|
Chesworth R, Corbit LH. Recent developments in the behavioural and pharmacological enhancement of extinction of drug seeking. Addict Biol 2017; 22:3-43. [PMID: 26687226 DOI: 10.1111/adb.12337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/13/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023]
Abstract
One of the principal barriers to overcoming addiction is the propensity to relapse, even after months or years of abstinence. Relapse can be precipitated by cues and contexts associated with drug use; thus, decreasing the conditioned properties of these cues and contexts may assist in preventing relapse. The predictive power of drug cues and contexts can be reduced by repeatedly presenting them in the absence of the drug reinforcer, a process known as extinction. The potential of extinction to limit relapse has generated considerable interest and research over the past few decades. While pre-clinical animal models suggest extinction learning assists relapse prevention, treatment efficacy is often lacking when extinction learning principles are translated into clinical trials. Conklin and Tiffany (Addiction, 2002) suggest the lack of efficacy in clinical practice may be due to limited translation of procedures demonstrated through animal research and propose several methodological improvements to enhance extinction learning for drug addiction. This review will examine recent advances in the behavioural and pharmacological manipulation of extinction learning, based on research from pre-clinical models. In addition, the translation of pre-clinical findings-both those suggested by Conklin and Tiffany () and novel demonstrations from the past 13 years-into clinical trials and the efficacy of these methods in reducing craving and relapse, where available, will be discussed. Finally, we highlight areas where promising pre-clinical models have not yet been integrated into current clinical practice but, if applied, could improve upon existing behavioural and pharmacological methods.
Collapse
|
7
|
Different dimensions of the prediction error as a decisive factor for the triggering of the reconsolidation process. Neurobiol Learn Mem 2016; 136:210-219. [PMID: 27815213 DOI: 10.1016/j.nlm.2016.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022]
Abstract
The reconsolidation process is the mechanism by which strength and/or content of consolidated memories are updated. Prediction error (PE) is the difference between the prediction made and current events. It is proposed as a necessary condition to trigger the reconsolidation process. Here we analyzed deeply the role of the PE in the associative memory reconsolidation in the crab Neohelice granulata. An incongruence between the learned temporal relationship between conditioned and unconditioned stimuli (CS-US) was enough to trigger the reconsolidation process. Moreover, after a partial reinforced training, a PE of 50% opened the possibility to labilize the consolidated memory with a reminder which included or not the US. Further, during an extinction training a small PE in the first interval between CSs was enough to trigger reconsolidation. Overall, we highlighted the relation between training history and different reactivation possibilities to recruit the process responsible of memory updating.
Collapse
|
8
|
Conditioned avoidance responses survive contingency degradation in the garden slug, Lehmannia valentiana. Learn Behav 2014; 42:305-12. [PMID: 24946946 DOI: 10.3758/s13420-014-0147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Joint presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US) strengthen the contingency between them, whereas presentations of one stimulus without the other degrade this contingency. For example, the CS can be presented without the US either before conditioning (CS-no US and then CS-US; latent inhibition) or after conditioning (CS-US and then CS-no US; extinction). In vertebrate subjects and several invertebrate species, a time lapse usually results in a return of the conditioned response, or spontaneous recovery. However, in land mollusks, spontaneous recovery from extinction has only recently been reported, and response recovery after latent inhibition has not been reported. In two experiments, using conditioned aversion to a food odor as a measure of learning and memory retention, we observed contingency degradation via latent inhibition (Experiment 1) and extinction (Experiment 2) in the common garden slug, Lehmannia valentiana. In both situations, the contingency degradation procedure successfully attenuated conditioned responding, and delaying testing by several days resulted in recovery of the conditioned response. This suggests that the CS-US association survived the degradation manipulation and was retained over an interval of several days.
Collapse
|
9
|
Alvarez B, Morís J, Luque D, Loy I. Extinction, spontaneous recovery and reinstatement in the garden snail, Helix aspersa. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Tano MC, Molina VA, Pedreira ME. The involvement of the GABAergic system in the formation and expression of the extinction memory in the crab Neohelice granulata. Eur J Neurosci 2013; 38:3302-13. [PMID: 23914974 DOI: 10.1111/ejn.12328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 11/28/2022]
Abstract
There is growing interest in the neurobiological mechanisms involved in the extinction of aversive memory. This cognitive process usually occurs after repeated or prolonged presentation of a conditioned stimulus that was previously associated with an unconditioned stimulus. If extinction is considered to be a new memory, the role of the γ-aminobutyric acid system (GABAergic system) during extinction memory consolidation should be similar to that described for the original trace. It is also accepted that negative modulation of the GABAergic system before testing can impair extinction memory expression. However, it seems possible to speculate that inhibitory mechanisms may be required in order to acquire a memory that is inhibitory in nature. Using a combination of behavioral protocols, such as weak and robust extinction training procedures, and pharmacological treatments, such as the systemic administration of GABAA agonist (muscimol) and antagonist (bicuculline), we investigated the role of the GABAergic system in the different phases of the extinction memory in the crab Neohelice granulata. We show that the stimulation of the GABAergic system impairs and its inactivation facilitates the extinction memory consolidation. Moreover, fine variations in the GABAergic tone affect its expression at testing. Finally, an active GABAergic system is necessary for the acquisition of the extinction memory. This detailed description may contribute to the understanding of the role of the GABAergic system in diverse aspects of the extinction memory.
Collapse
Affiliation(s)
- Martin Carbó Tano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
| | | | | |
Collapse
|
11
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
12
|
Fustiñana MS, Carbó Tano M, Romano A, Pedreira ME. Contextual Pavlovian conditioning in the crab Chasmagnathus. Anim Cogn 2012; 16:255-72. [DOI: 10.1007/s10071-012-0570-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 09/11/2012] [Accepted: 10/08/2012] [Indexed: 12/27/2022]
|
13
|
Abstract
During extinction animals experience that the previously learned association between a conditioned stimulus (CS) and an unconditioned stimulus (US) no longer holds true. Accordingly, the conditioned response (CR) to the CS decreases. This decrease of the CR can be reversed by presentation of the US alone following extinction, a phenomenon termed reinstatement. Reinstatement and two additional phenomena, spontaneous recovery and renewal, indicate that the original CS-US association is not lost through extinction but can be reactivated through different processes. In honeybees (Apis mellifera), spontaneous recovery, i.e., the time-dependent return of the CR, has been demonstrated, suggesting that also in these insects the original CS-US association is not lost during extinction. To support this notion, we ask whether honeybees show reinstatement after extinction. In vertebrates reinstatement is context-dependent, so we examined whether the same holds true for honeybees. We demonstrate reinstatement in restrained honeybees and show that reinstatement is context-dependent. Furthermore, we show that an alteration of the color of light illuminating the experimental setup suffices to indicate a contextual change. We conclude that in honeybees the initially formed CS-US memory is not lost after extinction. Rather, honeybees might learn about the context during extinction. This enables them to adequately retrieve one of the two opposing memories about the CS that have been formed after extinction.
Collapse
Affiliation(s)
- Jenny Aino Plath
- Freie Universität Berlin, FB Biologie, Pharmazie, Chemie, Institut für Biologie, Neurobiologie, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| | | | | |
Collapse
|
14
|
Federman N, Fustiñana MS, Romano A. Reconsolidation involves histone acetylation depending on the strength of the memory. Neuroscience 2012; 219:145-56. [PMID: 22659565 DOI: 10.1016/j.neuroscience.2012.05.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/18/2022]
Abstract
Gene expression is a necessary step for memory re-stabilization after retrieval, a process known as reconsolidation. Histone acetylation is a fundamental mechanism involved in epigenetic regulation of gene expression and has been implicated in memory consolidation. However, few studies are available in reconsolidation, all of them in vertebrate models. Additionally, the recruitment of histone acetylation as a function of different memory strengths has not been systematically analyzed before. Here we studied the role of histone acetylation in reconsolidation using a well-characterized memory model in invertebrate, the context-signal memory in the crab Chasmagnathus. Firstly, we found an increase in histone H3 acetylation 1h after memory reactivation returning to basal levels at 3 h. Strikingly, this increment was only detected during reconsolidation of a long-term memory induced by a strong training of 30 trials, but not for a short-term memory formed by a weak training of five trials or for a long-term memory induced by a standard training of 15 trials. Furthermore, we showed that a weak memory which was enhanced during consolidation by histone deacetylases inhibition, also recruited histone H3 acetylation in reconsolidation as the strong training does. Accordingly, we found the first evidence that the administration of a histone acetyl transferase inhibitor during memory reconsolidation impairs long-term memory re-stabilization. Finally, we found that strong training memory, at variance with the standard training memory, was resistant to extinction, indicating that such strong training induced in fact a stronger memory. In conclusion, the results presented here support that the participation of histone acetylation during reconsolidation is an evolutionary conserved feature and constitutes a specific molecular characteristic of strong memories.
Collapse
Affiliation(s)
- N Federman
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Pab. II, 2do piso (1428EHA), Buenos Aires, Argentina
| | | | | |
Collapse
|
15
|
Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience 2011; 201:239-51. [PMID: 22100787 DOI: 10.1016/j.neuroscience.2011.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus.
Collapse
|
16
|
Angiotensin modulates long-term memory expression but not long-term memory storage in the crab Chasmagnathus. Neurobiol Learn Mem 2010; 94:509-20. [DOI: 10.1016/j.nlm.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
|