1
|
Nakajima S, Hasegawa I, Nakao M, Tanaka A, Abe M, Li M. The elusive nature of forward blocking effect on running-based taste aversion learning in laboratory rats. Behav Processes 2025; 227:105187. [PMID: 40118259 DOI: 10.1016/j.beproc.2025.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/03/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
It is well documented that rats learn to avoid a taste solution consumed immediately before voluntary running in activity wheels, which represents a form of Pavlovian aversive conditioning based on the taste-running association. Although various behavioral phenomena observed in typical Pavlovian preparations, such as fear conditioning, have also been demonstrated in this setup, evidence of the associative blocking effect is limited. The present study aimed to demonstrate this effect, and the first experiment provided some positive evidence. Conditioning rats with serial presentations of two taste solutions followed by an opportunity to run (A → B → running) resulted in reduced aversion to taste A if the rats had prior experience of running after consuming B (B → running), suggesting that the previously established B-running association blocked the A-running association. However, subsequent experiments failed to yield statistically reliable results, raising questions about the robustness of the blocking effect on running-based taste aversion learning.
Collapse
Affiliation(s)
- Sadahiko Nakajima
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan.
| | - Iho Hasegawa
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| | - Maria Nakao
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| | - Ai Tanaka
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| | - Madoka Abe
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| | - Mengwei Li
- Department of Psychological Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan
| |
Collapse
|
2
|
Reid CR. Thoughts from the forest floor: a review of cognition in the slime mould Physarum polycephalum. Anim Cogn 2023; 26:1783-1797. [PMID: 37166523 PMCID: PMC10770251 DOI: 10.1007/s10071-023-01782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Sensing, communication, navigation, decision-making, memory and learning are key components in a standard cognitive tool-kit that enhance an animal's ability to successfully survive and reproduce. However, these tools are not only useful for, or accessible to, animals-they evolved long ago in simpler organisms using mechanisms which may be either unique or widely conserved across diverse taxa. In this article, I review the recent research that demonstrates these key cognitive abilities in the plasmodial slime mould Physarum polycephalum, which has emerged as a model for non-animal cognition. I discuss the benefits and limitations of comparisons drawn between neural and non-neural systems, and the implications of common mechanisms across wide taxonomic divisions. I conclude by discussing future avenues of research that will draw the most benefit from a closer integration of Physarum and animal cognition research.
Collapse
Affiliation(s)
- Chris R Reid
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
3
|
Jordan L, Alcalá JA, Urcelay GP, Prados J. Conditioned Place Avoidance in the Planaria Schmidtea mediterranea: A Pre-clinical Invertebrate Model of Anxiety-Related Disorders. Behav Processes 2023; 210:104894. [PMID: 37236492 DOI: 10.1016/j.beproc.2023.104894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The objective of the present study was to develop a model of avoidance learning and its extinction in planarians (Schmidtea mediterranea). Based on previous experiments showing conditioned place preference, we developed a procedure to investigate conditioned place avoidance (CPA) using shock as an unconditioned stimulus (US) and an automated tracking system to record the animals' behaviour. In Experiment 1, we assessed the unconditioned properties of different shock intensities by measuring post shock activity. In two subsequent experiments we investigated CPA using different designs, surfaces as conditioned stimuli (CSs; rough and smooth), and different US intensities (5V and 10V). In general, we observed the successful development of CPA. However, CPA was stronger with higher shock intensities, and we found that, in our preparation, a rough surface is best at entering into an association with the shock than a smooth surface. Finally, we also observed extinction of CPA. The evidence of CPA and its extinction in flatworms validates the planaria as a pre-clinical model for the study of avoidance learning, a hallmark of anxiety disorders.
Collapse
|
4
|
Elimari N, Lafargue G. Neural correlates of performance monitoring vary as a function of competition between automatic and controlled processes: An ERP study. Conscious Cogn 2023; 110:103505. [PMID: 37001443 DOI: 10.1016/j.concog.2023.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023]
Abstract
Dual process theories of attitude formation propose that an evolutionary old associative system automatically generates subjective judgments by processing mere spatiotemporal contiguity between paired objects, subjects, or events. These judgments can potentially contradict our well-reasoned evaluations and highjack decisional or behavioral outcomes. Contrary to this perspective, other models stress the exclusive work of a single propositional system that consciously process co-occurrences between environmental cues and produce propositions, i.e., mental statements that capture the specific manner through which stimuli are linked. We constructed an experiment on the premise that it would be possible, if the associative system does produce attitudes in a parallel non-conscious fashion, to condition two mutually exclusive attitudes (one implicit, the other explicit) toward a same stimulus. Through explicit ratings, inhibition performance, and neural correlates of performance monitoring, we assessed whether there was a discrepancy between stimuli that were conditioned with (1) the two systems working in harmony (i.e., producing congruent attitudes), or (2) the two systems working in competition (i.e., producing incongruent attitudes). Compared with congruent stimuli, incongruent stimuli consistently elicited more neutral liking scores, higher response times and error rates, as well as a diminished amplitudes in two well-studied neural correlates of automatic error detection (i.e., error-related negativity) and conscious appraisal of error commission (i.e., error-related positivity). Our findings are discussed in the light of evolutionary psychology, dual-process theories of attitude formation and theoretical frameworks on the functional significance of error-related neural markers.
Collapse
Affiliation(s)
- Nassim Elimari
- Université de Reims Champagne Ardenne, C2S, EA 6291, France
| | - Gilles Lafargue
- Université de Reims Champagne Ardenne, C2S, EA 6291, France.
| |
Collapse
|
5
|
Herrera E, Alcalá JA, Tazumi T, Buckley MG, Prados J, Urcelay GP. Temporal and spatial contiguity are necessary for competition between events. J Exp Psychol Learn Mem Cogn 2022; 48:321-347. [PMID: 35389725 PMCID: PMC8988872 DOI: 10.1037/xlm0001108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022]
Abstract
Over the last 50 years, cue competition phenomena have shaped theoretical developments in animal and human learning. However, recent failures to observe competition effects in standard conditioning procedures, as well as the lengthy and ongoing debate surrounding cue competition in the spatial learning literature, have cast doubts on the generality of these phenomena. In the present study, we manipulated temporal contiguity between simultaneously trained predictors and outcomes (Experiments 1-4), and spatial contiguity between landmarks and goals in spatial learning (Supplemental Experiments 1 and 2; Experiment 5). Across different parametric variations, we observed overshadowing when temporal and spatial contiguity were strong, but no overshadowing when contiguity was weak. Thus, across temporal and spatial domains, we observed that contiguity is necessary for competition to occur, and that competition between cues presented simultaneously during learning is absent when these cues were either spatially or temporally discontiguous from the outcome. Consequently, we advance a model in which the contiguity between events is accounted for and which explains these results and reconciles the previously contradictory findings observed in spatial learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Estibaliz Herrera
- Department of Neuroscience, Psychology and Behaviour, University of Leicester
| | | | | | | | | | | |
Collapse
|
6
|
Inoue T, Agata K. Quantification of planarian behaviors. Dev Growth Differ 2021; 64:16-37. [PMID: 34866186 DOI: 10.1111/dgd.12765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022]
Abstract
Research on individual behaviors can help to reveal the processes and mechanisms that mediate an animal's habits and interactions with the environment. Importantly, individual behaviors arise as outcomes of genetic programs, morphogenesis, physiological processes, and neural functions; thus, behavioral analyses can be used to detect disorders in these processes. Planarians belong to an early branching bilateral group of organisms that possess a simple central nervous system. Furthermore, planarians display various behavioral responses to the environment via their nervous system. Planarians also have remarkable regenerative abilities, including whole-brain regeneration. Therefore, the combination of planarians' phylogenetic position, behavioral properties, regenerative ability, and genetic accessibility provides a unique opportunity to understand the basic mechanisms underlying the anatomical properties of neural morphogenesis and the dynamic physiological processes and neural function. Here, we describe a step-by-step protocol for conducting simple behavioral analyses in planarians with the aim of helping to introduce researchers to the utility of performing behavioral analyses in planarians. Since the conditions of planarians impact experimental results and reproducibility, this protocol begins with a method for maintaining planarians. Next, we introduce the behavioral tests as well as the methods for quantifying them using minimal and cost-effective equipment and materials. Finally, we present a unique RNAi technique that enables conditional silencing of neural activity in the brain of planarians.
Collapse
Affiliation(s)
- Takeshi Inoue
- Division of Adaptation Physiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kiyokazu Agata
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| |
Collapse
|
7
|
Bennett MS. Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans. Front Neuroanat 2021; 15:693346. [PMID: 34489649 PMCID: PMC8418099 DOI: 10.3389/fnana.2021.693346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Retracing the evolutionary steps by which human brains evolved can offer insights into the underlying mechanisms of human brain function as well as the phylogenetic origin of various features of human behavior. To this end, this article presents a model for interpreting the physical and behavioral modifications throughout major milestones in human brain evolution. This model introduces the concept of a "breakthrough" as a useful tool for interpreting suites of brain modifications and the various adaptive behaviors these modifications enabled. This offers a unique view into the ordered steps by which human brains evolved and suggests several unique hypotheses on the mechanisms of human brain function.
Collapse
|
8
|
Agency rescues competition for credit assignment among predictive cues from adverse learning conditions. Sci Rep 2021; 11:16187. [PMID: 34376741 PMCID: PMC8355250 DOI: 10.1038/s41598-021-95541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
A fundamental assumption of learning theories is that the credit assigned to predictive cues is not simply determined by their probability of reinforcement, but by their ability to compete with other cues present during learning. This assumption has guided behavioral and neural science research for decades, and tremendous empirical and theoretical advances have been made identifying the mechanisms of cue competition. However, when learning conditions are not optimal (e.g., when training is massed), cue competition is attenuated. This failure of the learning system exposes the individual’s vulnerability to form spurious associations in the real world. Here, we uncover that cue competition in rats can be rescued when conditions are suboptimal provided that the individual has agency over the learning experience. Our findings reveal a new effect of agency over learning on credit assignment among predictive cues, and open new avenues of investigation into the underlying mechanisms.
Collapse
|
9
|
Bennett MS. What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front Psychol 2021; 12:685853. [PMID: 34393912 PMCID: PMC8358274 DOI: 10.3389/fpsyg.2021.685853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
This paper presents 13 hypotheses regarding the specific behavioral abilities that emerged at key milestones during the 600-million-year phylogenetic history from early bilaterians to extant humans. The behavioral, intellectual, and cognitive faculties of humans are complex and varied: we have abilities as diverse as map-based navigation, theory of mind, counterfactual learning, episodic memory, and language. But these faculties, which emerge from the complex human brain, are likely to have evolved from simpler prototypes in the simpler brains of our ancestors. Understanding the order in which behavioral abilities evolved can shed light on how and why our brains evolved. To propose these hypotheses, I review the available data from comparative psychology and evolutionary neuroscience.
Collapse
|
10
|
Mizunami M. What Is Learned in Pavlovian Conditioning in Crickets? Revisiting the S-S and S-R Learning Theories. Front Behav Neurosci 2021; 15:661225. [PMID: 34177477 PMCID: PMC8225941 DOI: 10.3389/fnbeh.2021.661225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
In Pavlovian conditioning in mammals, two theories have been proposed for associations underlying conditioned responses (CRs). One theory, called S-S theory, assumes an association between a conditioned stimulus (CS) and internal representation of an unconditioned stimulus (US), allowing the animal to adjust the CR depending on the current value of the US. The other theory, called S-R theory, assumes an association or connection between the CS center and the CR center, allowing the CS to elicit the CR. Whether these theories account for Pavlovian conditioning in invertebrates has remained unclear. In this article, results of our studies in the cricket Gryllus bimaculatus are reviewed. We showed that after a standard amount of Pavlovian training, crickets exhibited no response to odor CS when water US was devalued by providing it until satiation, whereas after extended training, they exhibited a CR after US devaluation. An increase of behavioral automaticity by extended training has not been reported in Pavlovian conditioning in any other animals, but it has been documented in instrumental conditioning in mammals. Our pharmacological analysis suggested that octopamine neurons mediate US (water) value signals and control execution of the CR after standard training. The control, however, diminishes with extension of training and hence the CR becomes insensitive to the US value. We also found that the nature of the habitual response after extended Pavlovian training in crickets is not the same as that after extended instrumental training in mammals concerning the context specificity. Adaptive significance and evolutionary implications for our findings are discussed.
Collapse
|
11
|
Sal F, Prados J, Urcelay GP. Nicotine chronic tolerance development and withdrawal in the planaria (Schmidtea mediterranea). Pharmacol Biochem Behav 2020; 200:173075. [PMID: 33245983 DOI: 10.1016/j.pbb.2020.173075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/18/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
Chronic nicotine exposure reduces sensitivity to the effects of nicotine, which then results in behavioural changes and tolerance development. In the planaria, a valuable first-stage preclinical model for addictive behaviour, acute nicotine administration has been shown to steadily alter the motility of the animals, a result that has been interpreted as evidence of tolerance and withdrawal effects; however, chronic exposure - typically regarded as a condition for the development of tolerance - and the role of the contextual cues have not been systematically assessed. The present study assessed the acute and chronic effects of nicotine on the motility of planarians (Schmidtea mediterranea). The animals in the experimental groups received long chronic exposure to nicotine (ten daily 30 min exposures); a control group was exposed to water in the same context but in the absence of the drug. The motility of the animals was closely monitored on every exposure. Following this phase, all the animals were subject to three different tests: in the presence of the exposure context (without the drug, Test 1); in the presence of nicotine in the exposure context (Test 2); and in the presence of the drug in a novel context (Test 3). Exposure to nicotine consistently reduced motility; the motility in the presence of nicotine increased with repeated exposures to the drug, an instance of tolerance development. Tolerance development was dependent on nicotinic receptor activation, because it was blocked by the co-administration of mecamylamine. However, this tolerance was found to be independent of the contextual cues where the effects of the drug had been experienced. The results are discussed by reference to the existent theories of tolerance development to drugs.
Collapse
Affiliation(s)
- Fatih Sal
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK
| | - Jose Prados
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK
| | - Gonzalo P Urcelay
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, UK.
| |
Collapse
|
12
|
Mizunami M, Terao K, Alvarez B. Application of a Prediction Error Theory to Pavlovian Conditioning in an Insect. Front Psychol 2018; 9:1272. [PMID: 30083125 PMCID: PMC6064870 DOI: 10.3389/fpsyg.2018.01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/03/2018] [Indexed: 12/01/2022] Open
Abstract
Elucidation of the conditions in which associative learning occurs is a critical issue in neuroscience and comparative psychology. In Pavlovian conditioning in mammals, it is thought that the discrepancy, or error, between the actual reward and the predicted reward determines whether learning occurs. This theory stems from the finding of Kamin’s blocking effect, in which after pairing of a stimulus with an unconditioned stimulus (US), conditioning of a second stimulus is blocked when the two stimuli are presented in compound and paired with the same US. Whether this theory is applicable to any species of invertebrates, however, has remained unknown. We first showed blocking and one-trial blocking of Pavlovian conditioning in the cricket Gryllus bimaculatus, which supported the Rescorla–Wagner model but not attentional theories, the major competitive error-correction learning theories to account for blocking. To match the prediction error theory, a neural circuit model was proposed, and prediction from the model was tested: the results were consistent with the Rescorla–Wagner model but not with the retrieval theory, another competitive theory to account for blocking. The findings suggest that the Rescorla–Wagner model best accounts for Pavlovian conditioning in crickets and that the basic computation rule underlying Pavlovian conditioning in crickets is the same to those suggested in mammals. Moreover, results of pharmacological studies in crickets suggested that octopamine and dopamine mediate prediction error signals in appetitive and aversive conditioning, respectively. This was in contrast to the notion that dopamine mediates appetitive prediction error signals in mammals. The functional significance and evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
| | - Kanta Terao
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
13
|
Mohammed Jawad RA, Hutchinson CV, Prados J. Dissociation of place preference and tolerance responses to sucrose using a dopamine antagonist in the planarian. Psychopharmacology (Berl) 2018; 235:829-836. [PMID: 29197982 PMCID: PMC5847079 DOI: 10.1007/s00213-017-4801-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/26/2017] [Indexed: 10/29/2022]
Abstract
In rodents, sucrose has been found to elicit addictive-like behaviours like the development of tolerance and the association with cues present at the time of consumption. Furthermore, the neurochemical response to sucrose binges is equivalent to the one observed in response to the abuse of addictive substances like cocaine. The experiments reported here address the effects of sucrose on an invertebrate model, the Platyhelminth brown planarian. The animals exposed to a 10% sucrose solution in one context developed a conditioned place preference (CPP) which was subsequently extinguished in the absence of the rewarding agent. However, one exposure to sucrose per se sufficed to reinstate the CPP response, suggesting sucrose-induced CPP can be characterised as a standard Pavlovian response. The same training procedure led to the development of context-specific tolerance to the effects of sucrose. However, comparing animals treated with dopamine D1 antagonist (SCH-23390) with control animals showed that the establishment of CPP, but not the development of tolerance, is mediated by the dopamine reward system.
Collapse
Affiliation(s)
- Rafat A. Mohammed Jawad
- 0000 0004 1936 8411grid.9918.9Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH UK ,Muthanna University, Samawah, Iraq
| | - Claire V. Hutchinson
- 0000 0004 1936 8411grid.9918.9Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Jose Prados
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
14
|
Bronfman ZZ, Ginsburg S, Jablonka E. The Transition to Minimal Consciousness through the Evolution of Associative Learning. Front Psychol 2016; 7:1954. [PMID: 28066282 PMCID: PMC5177968 DOI: 10.3389/fpsyg.2016.01954] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022] Open
Abstract
The minimal state of consciousness is sentience. This includes any phenomenal sensory experience - exteroceptive, such as vision and olfaction; interoceptive, such as pain and hunger; or proprioceptive, such as the sense of bodily position and movement. We propose unlimited associative learning (UAL) as the marker of the evolutionary transition to minimal consciousness (or sentience), its phylogenetically earliest sustainable manifestation and the driver of its evolution. We define and describe UAL at the behavioral and functional level and argue that the structural-anatomical implementations of this mode of learning in different taxa entail subjective feelings (sentience). We end with a discussion of the implications of our proposal for the distribution of consciousness in the animal kingdom, suggesting testable predictions, and revisiting the ongoing debate about the function of minimal consciousness in light of our approach.
Collapse
Affiliation(s)
- Zohar Z Bronfman
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv UniversityTel Aviv, Israel; School of Psychology, Tel Aviv UniversityTel Aviv, Israel
| | - Simona Ginsburg
- Department of Natural Science, The Open University of Israel Raanana, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv UniversityTel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
15
|
Hutchinson CV, Prados J, Davidson C. Persistent conditioned place preference to cocaine and withdrawal hypo-locomotion to mephedrone in the flatworm planaria. Neurosci Lett 2015; 593:19-23. [PMID: 25778415 DOI: 10.1016/j.neulet.2015.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/26/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
The purpose of the present study was to determine the effects of exposure to cocaine and mephedrone on conditioned place preference (CPP) and locomotion in the flatworm planaria. Planaria were treated with either cocaine or mephedrone at 1 or 10 μM. Planaria were exposed to 15 min of drug in their non-preferred place (either a rough- or smooth-floored petri dish) on alternate days, and were exposed to normal water in their preferred place on the following day. There were 5 days of conditioning to drug. Planaria were then tested for CPP on day 2, 6 and 13 after withdrawal. We found that animals exhibited CPP to cocaine at both 1 and 10 μM, but not to mephedrone. When examining locomotor activity we found that neither cocaine nor mephedrone treatment showed any evidence of evoking increased motility or locomotor sensitisation. Hypo-motility was seen on the first day of conditioning at concentrations of 10 μM for both cocaine and mephedrone, but had disappeared by the last day of conditioning. Examining chronic withdrawal, only 10 μM mephedrone had a significant effect on motility, decreasing locomotion on day 2 of withdrawal. Taken together we have shown that cocaine evoked CPP in planaria. We have also shown withdrawal depressing effects of mephedrone on motility.
Collapse
Affiliation(s)
| | - Jose Prados
- School of Psychology, University of Leicester, Leicester LE1 9HN, UK
| | - Colin Davidson
- Basic Medical Sciences, St George's University of London, London SW17 0RE, UK.
| |
Collapse
|
16
|
Inoue T, Hoshino H, Yamashita T, Shimoyama S, Agata K. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. ZOOLOGICAL LETTERS 2015; 1:7. [PMID: 26605052 PMCID: PMC4657317 DOI: 10.1186/s40851-014-0010-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/27/2014] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Planarians belong to an evolutionarily early group of organisms that possess a central nervous system including a well-organized brain with a simple architecture but many types of neurons. Planarians display a number of behaviors, such as phototaxis and thermotaxis, in response to external stimuli, and it has been shown that various molecules and neural pathways in the brain are involved in controlling these behaviors. However, due to the lack of combinatorial assay methods, it remains obscure whether planarians possess higher brain functions, including integration in the brain, in which multiple signals coming from outside are coordinated and used in determining behavioral strategies. RESULTS In the present study, we designed chemotaxis and thigmotaxis/kinesis tracking assays to measure several planarian behaviors in addition to those measured by phototaxis and thermotaxis assays previously established by our group, and used these tests to analyze planarian chemotactic and thigmotactic/kinetic behaviors. We found that headless planarian body fragments and planarians that had specifically lost neural activity following regeneration-dependent conditional gene knockdown (Readyknock) of synaptotagmin in the brain lost both chemotactic and thigmotactic behaviors, suggesting that neural activity in the brain is required for the planarian's chemotactic and thigmotactic behaviors. Furthermore, we compared the strength of phototaxis, chemotaxis, thigmotaxis/kinesis, and thermotaxis by presenting simultaneous binary stimuli to planarians. We found that planarians showed a clear order of predominance of these behaviors. For example, when planarians were simultaneously exposed to 400 lux of light and a chemoattractant, they showed chemoattractive behavior irrespective of the direction of the light source, although exposure to light of this intensity alone induces evasive behavior away from the light source. In contrast, when the light intensity was increased to 800 or 1600 lux and the same dose of chemoattractant was presented, planarian behaviors were gradually shifted to negative phototaxis rather than chemoattraction. These results suggest that planarians may be capable of selecting behavioral strategies via the integration of discrete brain functions when exposed to multiple stimuli. CONCLUSIONS The planarian brain processes external signals received through the respective sensory neurons, thereby resulting in the production of appropriate behaviors. In addition, planarians can adjust behavioral features in response to stimulus conditions by integrating multiple external signals in the brain.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 Japan
| | - Hajime Hoshino
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 Japan
| | - Taiga Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 Japan
| | - Seira Shimoyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
17
|
Galantamine reverses scopolamine-induced behavioral alterations in Dugesia tigrina. INVERTEBRATE NEUROSCIENCE 2014; 14:91-101. [PMID: 24402079 DOI: 10.1007/s10158-013-0167-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
In planaria (Dugesia tigrina), scopolamine, a nonselective muscarinic receptor antagonist, induced distinct behaviors of attenuated motility and C-like hyperactivity. Planarian locomotor velocity (pLMV) displayed a dose-dependent negative correlation with scopolamine concentrations from 0.001 to 1.0 mM, and a further increase in scopolamine concentration to 2.25 mM did not further decrease pLMV. Planarian hyperactivity counts was dose-dependently increased following pretreatment with scopolamine concentrations from 0.001 to 0.5 mM and then decreased for scopolamine concentrations ≥ 1 mM. Planarian learning and memory investigated using classical Pavlovian conditioning experiments demonstrated that scopolamine (1 mM) negatively influenced associative learning indicated by a significant decrease in % positive behaviors from 86 % (control) to 14 % (1 mM scopolamine) and similarly altered memory retention, which is indicated by a decrease in % positive behaviors from 69 % (control) to 27 % (1 mM scopolamine). Galantamine demonstrated a complex behavior in planarian motility experiments since co-application of low concentrations of galantamine (0.001 and 0.01 mM) protected planaria against 1 mM scopolamine-induced motility impairments; however, pLMV was significantly decreased when planaria were tested in the presence of 0.1 mM galantamine alone. Effects of co-treatment of scopolamine and galantamine on memory retention in planaria via classical Pavlovian conditioning experiments showed that galantamine (0.01 mM) partially reversed scopolamine (1 mM)-induced memory deficits in planaria as the % positive behaviors increased from 27 to 63 %. The results demonstrate, for the first time in planaria, scopolamine's effects in causing learning and memory impairments and galantamine's ability in reversing scopolamine-induced memory impairments.
Collapse
|
18
|
Prados J, Alvarez B, Acebes F, Loy I, Sansa J, Moreno-Fernández MM. Blocking in rats, humans and snails using a within-subjects design. Behav Processes 2013; 100:23-31. [PMID: 23892050 DOI: 10.1016/j.beproc.2013.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/05/2013] [Indexed: 12/01/2022]
Abstract
The present research investigated the blocking effect in three different species, rats, humans and snails in formally equivalent tasks using a within-subjects design. Experiment 1 demonstrated the blocking effect in a context-flavour aversive conditioning preparation in rats: Animals failed to associate a flavour with an illness episode when it was presented in a context in which the illness was already predicted by other cues. Experiment 2 replicated this blocking effect in humans assessing their ability to learn a goal location in a virtual environment: Participants failed to learn the location of the goal in reference to a spatial cue presented alongside other pre-trained spatial cues that already indicated its location. Finally, in Experiment 3, snails failed to associate an odour with the presentation of food in the presence of other odours that already reliably predicted its presentation. The present study offers a start point for systematic comparisons between vertebrate and invertebrate species in formally equivalent tasks that produce univocal demonstrations of the blocking effect.
Collapse
Affiliation(s)
- Jose Prados
- School of Psychology, University of Leicester, Lancaster Road, Leicester, Leicestershire LE1 9HN, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Shomrat T, Levin M. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. ACTA ACUST UNITED AC 2013; 216:3799-810. [PMID: 23821717 DOI: 10.1242/jeb.087809] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Planarian flatworms are a popular system for research into the molecular mechanisms that enable these complex organisms to regenerate their entire body, including the brain. Classical data suggest that they may also be capable of long-term memory. Thus, the planarian system may offer the unique opportunity to study brain regeneration and memory in the same animal. To establish a system for the investigation of the dynamics of memory in a regenerating brain, we developed a computerized training and testing paradigm that avoided the many issues that confounded previous, manual attempts to train planarians. We then used this new system to train flatworms in an environmental familiarization protocol. We show that worms exhibit environmental familiarization, and that this memory persists for at least 14 days - long enough for the brain to regenerate. We further show that trained, decapitated planarians exhibit evidence of memory retrieval in a savings paradigm after regenerating a new head. Our work establishes a foundation for objective, high-throughput assays in this molecularly tractable model system that will shed light on the fundamental interface between body patterning and stored memories. We propose planarians as key emerging model species for mechanistic investigations of the encoding of specific memories in biological tissues. Moreover, this system is lik ely to have important implications for the biomedicine of stem-cell-derived treatments of degenerative brain disorders in human adults.
Collapse
Affiliation(s)
- Tal Shomrat
- Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | | |
Collapse
|