1
|
Larsson M. Schooling Fish from a New, Multimodal Sensory Perspective. Animals (Basel) 2024; 14:1984. [PMID: 38998096 PMCID: PMC11240491 DOI: 10.3390/ani14131984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The acoustic hypothesis suggests that schooling can result in several benefits. (1) The acoustic pattern (AP) (pressure waves and other water movements) produced by swimming are likely to serve as signals within fish shoals, communicating useful spatial and temporal information between school members, enabling synchronized locomotion and influencing join, stay or leave decisions and shoal assortment. (2) Schooling is likely to reduce the masking of environmental signals, e.g., by auditory grouping, and fish may achieve windows of silence by simultaneously stopping their movements. (3) A solitary swimming fish produces an uncomplicated AP that will give a nearby predator's lateral line organ (LLO) excellent information, but, if extra fish join, they will produce increasingly complex and indecipherable APs. (4) Fishes swimming close to one another will also blur the electrosensory system (ESS) of predators. Since predators use multimodal information, and since information from the LLO and the ESS is more important than vision in many situations, schooling fish may acquire increased survival by confusing these sensory systems. The combined effects of such predator confusion and other acoustical benefits may contribute to why schooling became an adaptive success. A model encompassing the complex effects of synchronized group locomotion on LLO and ESS perception might increase the understanding of schooling behavior.
Collapse
Affiliation(s)
- Matz Larsson
- Clinical Health Promotion Centre, Lund University, 22100 Lund, Sweden
- School of Health and Medical Sciences, Örebro University, 70182 Örebro, Sweden
- The Heart, Lung and Physiology Clinic, Örebro University Hospital, 70185 Örebro, Sweden
| |
Collapse
|
2
|
Regev TI, Kim HS, Chen X, Affourtit J, Schipper AE, Bergen L, Mahowald K, Fedorenko E. High-level language brain regions process sublexical regularities. Cereb Cortex 2024; 34:bhae077. [PMID: 38494886 PMCID: PMC11486690 DOI: 10.1093/cercor/bhae077] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
A network of left frontal and temporal brain regions supports language processing. This "core" language network stores our knowledge of words and constructions as well as constraints on how those combine to form sentences. However, our linguistic knowledge additionally includes information about phonemes and how they combine to form phonemic clusters, syllables, and words. Are phoneme combinatorics also represented in these language regions? Across five functional magnetic resonance imaging experiments, we investigated the sensitivity of high-level language processing brain regions to sublexical linguistic regularities by examining responses to diverse nonwords-sequences of phonemes that do not constitute real words (e.g. punes, silory, flope). We establish robust responses in the language network to visually (experiment 1a, n = 605) and auditorily (experiments 1b, n = 12, and 1c, n = 13) presented nonwords. In experiment 2 (n = 16), we find stronger responses to nonwords that are more well-formed, i.e. obey the phoneme-combinatorial constraints of English. Finally, in experiment 3 (n = 14), we provide suggestive evidence that the responses in experiments 1 and 2 are not due to the activation of real words that share some phonology with the nonwords. The results suggest that sublexical regularities are stored and processed within the same fronto-temporal network that supports lexical and syntactic processes.
Collapse
Affiliation(s)
- Tamar I Regev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Hee So Kim
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Xuanyi Chen
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive Sciences, Rice University, Houston, TX 77005, United States
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Abigail E Schipper
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Leon Bergen
- Department of Linguistics, University of California San Diego, San Diego CA 92093, United States
| | - Kyle Mahowald
- Department of Linguistics, University of Texas at Austin, Austin, TX 78712, United States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Harvard Program in Speech and Hearing Bioscience and Technology, Boston, MA 02115, United States
| |
Collapse
|
3
|
The evolutionary roots of goal-directed mechanisms: A communication account. Behav Brain Sci 2023; 46:e3. [PMID: 36799042 DOI: 10.1017/s0140525x22000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Unleashed expressions for cooperation are mainly based on the expected perceptual effects of behaviours and not the behaviours themselves. From an evolutionary viewpoint, this goal-directed mechanism allows for a comprehensive story for the theory proposed by Heintz & Scott-Phillips. Over the past 2 million years, this situated mechanism has been reused for tool use and the language development for hominids.
Collapse
|
4
|
Valencia GN, Khoo S, Wong T, Ta J, Hou B, Barsalou LW, Hazen K, Lin HH, Wang S, Brefczynski-Lewis JA, Frum CA, Lewis JW. Chinese-English bilinguals show linguistic-perceptual links in the brain associating short spoken phrases with corresponding real-world natural action sounds by semantic category. LANGUAGE, COGNITION AND NEUROSCIENCE 2021; 36:773-790. [PMID: 34568509 PMCID: PMC8462789 DOI: 10.1080/23273798.2021.1883073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
Higher cognitive functions such as linguistic comprehension must ultimately relate to perceptual systems in the brain, though how and why this forms remains unclear. Different brain networks that mediate perception when hearing real-world natural sounds has recently been proposed to respect a taxonomic model of acoustic-semantic categories. Using functional magnetic resonance imaging (fMRI) with Chinese/English bilingual listeners, the present study explored whether reception of short spoken phrases, in both Chinese (Mandarin) and English, describing corresponding sound-producing events would engage overlapping brain regions at a semantic category level. The results revealed a double-dissociation of cortical regions that were preferential for representing knowledge of human versus environmental action events, whether conveyed through natural sounds or the corresponding spoken phrases depicted by either language. These findings of cortical hubs exhibiting linguistic-perceptual knowledge links at a semantic category level should help to advance neurocomputational models of the neurodevelopment of language systems.
Collapse
Affiliation(s)
- Gabriela N. Valencia
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University (WVU), Morgantown, WV 26506, USA
| | - Stephanie Khoo
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University (WVU), Morgantown, WV 26506, USA
| | - Ting Wong
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University (WVU), Morgantown, WV 26506, USA
| | - Joseph Ta
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University (WVU), Morgantown, WV 26506, USA
| | - Bob Hou
- Department of Radiology, Center for Advanced Imaging
| | | | - Kirk Hazen
- Department of English, West Virginia University
| | | | - Shuo Wang
- Department of Chemical and Biomedical Engineering
| | - Julie A. Brefczynski-Lewis
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University (WVU), Morgantown, WV 26506, USA
| | - Chris A. Frum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University (WVU), Morgantown, WV 26506, USA
| | - James W. Lewis
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University (WVU), Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Shinohara K, Kawahara S, Tanaka H. Visual and Proprioceptive Perceptions Evoke Motion-Sound Symbolism: Different Acceleration Profiles Are Associated With Different Types of Consonants. Front Psychol 2020; 11:589797. [PMID: 33281688 PMCID: PMC7688920 DOI: 10.3389/fpsyg.2020.589797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
A growing body of literature has shown that one perceptual modality can be systematically associated with sensation in another. However, the cross-modal relationship between linguistic sounds and motions (i.e., motion-sound symbolism) is an extremely understudied area of research. Against this background, this paper examines the cross-modal correspondences between categories of consonants on one hand and different acceleration profiles of motion stimuli on the other. In the two experiments that we conducted, we mechanically manipulated the acceleration profiles of the stimuli while holding the trajectory paths constant, thus distinguishing the effect of acceleration profiles from that of motion path shapes. The results show that different acceleration profiles can be associated with different types of consonants; in particular, movements with acceleration and deceleration tend to be associated with a class of sounds called obstruents, whereas movements without much acceleration tend to be associated with a class of sounds called sonorants. Moreover, the current experiments show that this sort of cross-modal correspondence arises even when the stimuli are not presented visually, namely, when the participants' hands were moved passively by a manipulandum. In conclusion, the present study adds an additional piece of evidence demonstrating that bodily action-based information, i.e., proprioception as a very feasible candidate, could lead to sound symbolic patterns.
Collapse
Affiliation(s)
- Kazuko Shinohara
- Language and Culture Studies, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigeto Kawahara
- The Institute of Cultural and Linguistic Studies, Keio University, Tokyo, Japan
| | - Hideyuki Tanaka
- Human Movement Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Talkington WJ, Donai J, Kadner AS, Layne ML, Forino A, Wen S, Gao S, Gray MM, Ashraf AJ, Valencia GN, Smith BD, Khoo SK, Gray SJ, Lass N, Brefczynski-Lewis JA, Engdahl S, Graham D, Frum CA, Lewis JW. Electrophysiological Evidence of Early Cortical Sensitivity to Human Conspecific Mimic Voice as a Distinct Category of Natural Sound. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:3539-3559. [PMID: 32936717 PMCID: PMC8060013 DOI: 10.1044/2020_jslhr-20-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Purpose From an anthropological perspective of hominin communication, the human auditory system likely evolved to enable special sensitivity to sounds produced by the vocal tracts of human conspecifics whether attended or passively heard. While numerous electrophysiological studies have used stereotypical human-produced verbal (speech voice and singing voice) and nonverbal vocalizations to identify human voice-sensitive responses, controversy remains as to when (and where) processing of acoustic signal attributes characteristic of "human voiceness" per se initiate in the brain. Method To explore this, we used animal vocalizations and human-mimicked versions of those calls ("mimic voice") to examine late auditory evoked potential responses in humans. Results Here, we revealed an N1b component (96-120 ms poststimulus) during a nonattending listening condition showing significantly greater magnitude in response to mimics, beginning as early as primary auditory cortices, preceding the time window reported in previous studies that revealed species-specific vocalization processing initiating in the range of 147-219 ms. During a sound discrimination task, a P600 (500-700 ms poststimulus) component showed specificity for accurate discrimination of human mimic voice. Distinct acoustic signal attributes and features of the stimuli were used in a classifier model, which could distinguish most human from animal voice comparably to behavioral data-though none of these single features could adequately distinguish human voiceness. Conclusions These results provide novel ideas for algorithms used in neuromimetic hearing aids, as well as direct electrophysiological support for a neurocognitive model of natural sound processing that informs both neurodevelopmental and anthropological models regarding the establishment of auditory communication systems in humans. Supplemental Material https://doi.org/10.23641/asha.12903839.
Collapse
Affiliation(s)
- William J. Talkington
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Jeremy Donai
- Department of Communication Sciences and Disorders, College of Education and Human Services, West Virginia University, Morgantown
| | - Alexandra S. Kadner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Molly L. Layne
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Andrew Forino
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown
| | - Si Gao
- Department of Biostatistics, West Virginia University, Morgantown
| | - Margeaux M. Gray
- Department of Biology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Alexandria J. Ashraf
- Department of Biology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Gabriela N. Valencia
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Brandon D. Smith
- Department of Biology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Stephanie K. Khoo
- Department of Biology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Stephen J. Gray
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - Norman Lass
- Department of Communication Sciences and Disorders, College of Education and Human Services, West Virginia University, Morgantown
| | | | - Susannah Engdahl
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - David Graham
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown
| | - Chris A. Frum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| | - James W. Lewis
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown
| |
Collapse
|
7
|
Badets A, Duville M, Osiurak F. Tool-number interaction during a prospective memory task. Cogn Process 2020; 21:501-508. [PMID: 32601997 DOI: 10.1007/s10339-020-00983-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/20/2020] [Indexed: 11/28/2022]
Abstract
Theoretical views suggest that tool use and numerical magnitude processing can interact during prospective actions. For example, if a person intends to make a meal for several persons the next week, she/he will have to keep in mind during the homework-week large dish and large food portions for this event. Here, the magnitude 'large' can influence the future choice for large dishes and other related large tools. This study presents the first empirical evidence supporting this hypothesis. During a prospective memory task that implied to keep in mind a future action, participants were required to use a tool after processing Arabic numbers. Small (less than 5) and large (more than 5) magnitudes were employed as cues for the initiation of the tool-use task, which required participants to use inverse pliers with a small or a large object, but only for some prospective trials. The inverse pliers were used to dissociate the hand action from the tool action with the object (for example, opening the hand produced the closing action of the tool). The results revealed that during prospective trials, number processing interacted only with the tool action toward the object and not with the hand action. Specifically, after the processing of large magnitudes, the initiation of the closing action of the tool (i.e. the opening action of the hand) was reduced. This finding is discussed in the light of theories on the emergence of semantics through tool actions.
Collapse
Affiliation(s)
- Arnaud Badets
- CNRS, INCIA - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR 5287), Université de Bordeaux, Bât. 2A- 2ème étage, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.
| | - Mathilde Duville
- CNRS, INCIA - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR 5287), Université de Bordeaux, Bât. 2A- 2ème étage, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
8
|
Yamauchi N, Shinohara K, Tanaka H. Crossmodal Association Between Linguistic Sounds and Motion Imagery: Voicing in Obstruents Connects With Different Strengths of Motor Execution. Perception 2019; 48:530-540. [PMID: 31042106 DOI: 10.1177/0301006619847577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study investigates whether obstruent voicing may or may not affect the imagery of different strengths of motor execution. In a modified version of the implicit association test, participants responded to discrimination tasks that include viewing static pictures of athletes in motion and hearing mono-syllabic linguistic sounds. The results suggest that voiced obstruents are compatible with the motion imagery that implies stronger motor executions, whereas voiceless obstruents are compatible with the imagery that implies weaker motor executions. These results provide experimental support for crossmodal associations between the auditory perception of linguistic sounds, namely, the voicing of obstruents, and the visually induced imagery of different levels of strength in motor actions.
Collapse
Affiliation(s)
- Naoto Yamauchi
- Faculty of Health and Sports Science, Kokushikan University, Tokyo, Japan; Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Japan
| | - Kazuko Shinohara
- Division of Language and Culture Studies, Institute of Engineering, Tokyo University of Agriculture and Technology, Japan
| | - Hideyuki Tanaka
- Laboratory of Human Movement Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Japan
| |
Collapse
|
9
|
Lewis JW, Silberman MJ, Donai JJ, Frum CA, Brefczynski-Lewis JA. Hearing and orally mimicking different acoustic-semantic categories of natural sound engage distinct left hemisphere cortical regions. BRAIN AND LANGUAGE 2018; 183:64-78. [PMID: 29966815 PMCID: PMC6461214 DOI: 10.1016/j.bandl.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/22/2018] [Accepted: 05/06/2018] [Indexed: 05/10/2023]
Abstract
Oral mimicry is thought to represent an essential process for the neurodevelopment of spoken language systems in infants, the evolution of language in hominins, and a process that could possibly aid recovery in stroke patients. Using functional magnetic resonance imaging (fMRI), we previously reported a divergence of auditory cortical pathways mediating perception of specific categories of natural sounds. However, it remained unclear if or how this fundamental sensory organization by the brain might relate to motor output, such as sound mimicry. Here, using fMRI, we revealed a dissociation of activated brain regions preferential for hearing with the intent to imitate and the oral mimicry of animal action sounds versus animal vocalizations as distinct acoustic-semantic categories. This functional dissociation may reflect components of a rudimentary cortical architecture that links systems for processing acoustic-semantic universals of natural sound with motor-related systems mediating oral mimicry at a category level. The observation of different brain regions involved in different aspects of oral mimicry may inform targeted therapies for rehabilitation of functional abilities after stroke.
Collapse
Affiliation(s)
- James W Lewis
- Rockefeller Neurosciences Institute, Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Magenta J Silberman
- Rockefeller Neurosciences Institute, Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Jeremy J Donai
- Rockefeller Neurosciences Institute, Department of Communication Sciences and Disorders, West Virginia University, Morgantown, WV 26506, USA
| | - Chris A Frum
- Rockefeller Neurosciences Institute, Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Julie A Brefczynski-Lewis
- Rockefeller Neurosciences Institute, Department of Physiology, Pharmacology & Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Perniss P. Why We Should Study Multimodal Language. Front Psychol 2018; 9:1109. [PMID: 30002643 PMCID: PMC6032889 DOI: 10.3389/fpsyg.2018.01109] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/11/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Pamela Perniss
- School of Humanities, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
11
|
Larsson M. Did heart asymmetry play a role in the evolution of human handedness? JOURNAL OF CULTURAL COGNITIVE SCIENCE 2017. [DOI: 10.1007/s41809-017-0009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ravignani A, Madison G. The Paradox of Isochrony in the Evolution of Human Rhythm. Front Psychol 2017; 8:1820. [PMID: 29163252 PMCID: PMC5681750 DOI: 10.3389/fpsyg.2017.01820] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/30/2017] [Indexed: 01/04/2023] Open
Abstract
Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general.
Collapse
Affiliation(s)
- Andrea Ravignani
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Veterinary and Research Department, Sealcentre Pieterburen, Pieterburen, Netherlands.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Madison
- Department of Psychology, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Brefczynski-Lewis JA, Lewis JW. Auditory object perception: A neurobiological model and prospective review. Neuropsychologia 2017; 105:223-242. [PMID: 28467888 PMCID: PMC5662485 DOI: 10.1016/j.neuropsychologia.2017.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022]
Abstract
Interaction with the world is a multisensory experience, but most of what is known about the neural correlates of perception comes from studying vision. Auditory inputs enter cortex with its own set of unique qualities, and leads to use in oral communication, speech, music, and the understanding of emotional and intentional states of others, all of which are central to the human experience. To better understand how the auditory system develops, recovers after injury, and how it may have transitioned in its functions over the course of hominin evolution, advances are needed in models of how the human brain is organized to process real-world natural sounds and "auditory objects". This review presents a simple fundamental neurobiological model of hearing perception at a category level that incorporates principles of bottom-up signal processing together with top-down constraints of grounded cognition theories of knowledge representation. Though mostly derived from human neuroimaging literature, this theoretical framework highlights rudimentary principles of real-world sound processing that may apply to most if not all mammalian species with hearing and acoustic communication abilities. The model encompasses three basic categories of sound-source: (1) action sounds (non-vocalizations) produced by 'living things', with human (conspecific) and non-human animal sources representing two subcategories; (2) action sounds produced by 'non-living things', including environmental sources and human-made machinery; and (3) vocalizations ('living things'), with human versus non-human animals as two subcategories therein. The model is presented in the context of cognitive architectures relating to multisensory, sensory-motor, and spoken language organizations. The models' predictive values are further discussed in the context of anthropological theories of oral communication evolution and the neurodevelopment of spoken language proto-networks in infants/toddlers. These phylogenetic and ontogenetic frameworks both entail cortical network maturations that are proposed to at least in part be organized around a number of universal acoustic-semantic signal attributes of natural sounds, which are addressed herein.
Collapse
Affiliation(s)
- Julie A Brefczynski-Lewis
- Blanchette Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; Department of Physiology, Pharmacology, & Neuroscience, West Virginia University, PO Box 9229, Morgantown, WV 26506, USA
| | - James W Lewis
- Blanchette Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; Department of Physiology, Pharmacology, & Neuroscience, West Virginia University, PO Box 9229, Morgantown, WV 26506, USA.
| |
Collapse
|
14
|
Webster PJ, Skipper-Kallal LM, Frum CA, Still HN, Ward BD, Lewis JW. Divergent Human Cortical Regions for Processing Distinct Acoustic-Semantic Categories of Natural Sounds: Animal Action Sounds vs. Vocalizations. Front Neurosci 2017; 10:579. [PMID: 28111538 PMCID: PMC5216875 DOI: 10.3389/fnins.2016.00579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/05/2016] [Indexed: 11/13/2022] Open
Abstract
A major gap in our understanding of natural sound processing is knowledge of where or how in a cortical hierarchy differential processing leads to categorical perception at a semantic level. Here, using functional magnetic resonance imaging (fMRI) we sought to determine if and where cortical pathways in humans might diverge for processing action sounds vs. vocalizations as distinct acoustic-semantic categories of real-world sound when matched for duration and intensity. This was tested by using relatively less semantically complex natural sounds produced by non-conspecific animals rather than humans. Our results revealed a striking double-dissociation of activated networks bilaterally. This included a previously well described pathway preferential for processing vocalization signals directed laterally from functionally defined primary auditory cortices to the anterior superior temporal gyri, and a less well-described pathway preferential for processing animal action sounds directed medially to the posterior insulae. We additionally found that some of these regions and associated cortical networks showed parametric sensitivity to high-order quantifiable acoustic signal attributes and/or to perceptual features of the natural stimuli, such as the degree of perceived recognition or intentional understanding. Overall, these results supported a neurobiological theoretical framework for how the mammalian brain may be fundamentally organized to process acoustically and acoustic-semantically distinct categories of ethologically valid, real-world sounds.
Collapse
Affiliation(s)
- Paula J. Webster
- Blanchette Rockefellar Neurosciences Institute, Department of Neurobiology & Anatomy, West Virginia UniversityMorgantown, WV, USA
| | - Laura M. Skipper-Kallal
- Blanchette Rockefellar Neurosciences Institute, Department of Neurobiology & Anatomy, West Virginia UniversityMorgantown, WV, USA
- Department of Neurology, Georgetown University Medical CampusWashington, DC, USA
| | - Chris A. Frum
- Department of Physiology and Pharmacology, West Virginia UniversityMorgantown, WV, USA
| | - Hayley N. Still
- Blanchette Rockefellar Neurosciences Institute, Department of Neurobiology & Anatomy, West Virginia UniversityMorgantown, WV, USA
| | - B. Douglas Ward
- Department of Biophysics, Medical College of WisconsinMilwaukee, WI, USA
| | - James W. Lewis
- Blanchette Rockefellar Neurosciences Institute, Department of Neurobiology & Anatomy, West Virginia UniversityMorgantown, WV, USA
| |
Collapse
|
15
|
Lemaitre G, Houix O, Voisin F, Misdariis N, Susini P. Vocal Imitations of Non-Vocal Sounds. PLoS One 2016; 11:e0168167. [PMID: 27992480 PMCID: PMC5161510 DOI: 10.1371/journal.pone.0168167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022] Open
Abstract
Imitative behaviors are widespread in humans, in particular whenever two persons communicate and interact. Several tokens of spoken languages (onomatopoeias, ideophones, and phonesthemes) also display different degrees of iconicity between the sound of a word and what it refers to. Thus, it probably comes at no surprise that human speakers use a lot of imitative vocalizations and gestures when they communicate about sounds, as sounds are notably difficult to describe. What is more surprising is that vocal imitations of non-vocal everyday sounds (e.g. the sound of a car passing by) are in practice very effective: listeners identify sounds better with vocal imitations than with verbal descriptions, despite the fact that vocal imitations are inaccurate reproductions of a sound created by a particular mechanical system (e.g. a car driving by) through a different system (the voice apparatus). The present study investigated the semantic representations evoked by vocal imitations of sounds by experimentally quantifying how well listeners could match sounds to category labels. The experiment used three different types of sounds: recordings of easily identifiable sounds (sounds of human actions and manufactured products), human vocal imitations, and computational “auditory sketches” (created by algorithmic computations). The results show that performance with the best vocal imitations was similar to the best auditory sketches for most categories of sounds, and even to the referent sounds themselves in some cases. More detailed analyses showed that the acoustic distance between a vocal imitation and a referent sound is not sufficient to account for such performance. Analyses suggested that instead of trying to reproduce the referent sound as accurately as vocally possible, vocal imitations focus on a few important features, which depend on each particular sound category. These results offer perspectives for understanding how human listeners store and access long-term sound representations, and sets the stage for the development of human-computer interfaces based on vocalizations.
Collapse
Affiliation(s)
- Guillaume Lemaitre
- Equipe Perception et Design Sonores, STMS-IRCAM-CNRS-UPMC, Institut de Recherche et de Coordination Acoustique Musique, Paris, France
- * E-mail:
| | - Olivier Houix
- Equipe Perception et Design Sonores, STMS-IRCAM-CNRS-UPMC, Institut de Recherche et de Coordination Acoustique Musique, Paris, France
| | - Frédéric Voisin
- Equipe Perception et Design Sonores, STMS-IRCAM-CNRS-UPMC, Institut de Recherche et de Coordination Acoustique Musique, Paris, France
| | - Nicolas Misdariis
- Equipe Perception et Design Sonores, STMS-IRCAM-CNRS-UPMC, Institut de Recherche et de Coordination Acoustique Musique, Paris, France
| | - Patrick Susini
- Equipe Perception et Design Sonores, STMS-IRCAM-CNRS-UPMC, Institut de Recherche et de Coordination Acoustique Musique, Paris, France
| |
Collapse
|
16
|
Badets A, Osiurak F. The ideomotor recycling theory for tool use, language, and foresight. Exp Brain Res 2016; 235:365-377. [PMID: 27815576 DOI: 10.1007/s00221-016-4812-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/21/2016] [Indexed: 11/26/2022]
Abstract
The present theoretical framework highlights a common action-perception mechanism for tool use, spoken language, and foresight capacity. On the one hand, it has been suggested that human language and the capacity to envision the future (i.e. foresight) have, from an evolutionary viewpoint, developed mutually along with the pressure of tool use. This co-evolution has afforded humans an evident survival advantage in the animal kingdom because language can help to refine the representation of future scenarios, which in turn can help to encourage or discourage engagement in appropriate and efficient behaviours. On the other hand, recent assumptions regarding the evolution of the brain have capitalized on the concept of "neuronal recycling". In the domain of cognitive neuroscience, neuronal recycling means that during evolution, some neuronal areas and cognitive functions have been recycled to manage new environmental and social constraints. In the present article, we propose that the co-evolution of tool use, language, and foresight represents a suitable example of such functional recycling throughout a well-defined common action-perception mechanism, i.e. the ideomotor mechanism. This ideomotor account is discussed in light of different future ontogenetic and phylogenetic perspectives.
Collapse
Affiliation(s)
- Arnaud Badets
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR 5287), Université de Bordeaux, Bât. 2A- 2ème étage, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
17
|
Phonological perception by birds: budgerigars can perceive lexical stress. Anim Cogn 2016; 19:643-54. [PMID: 26914456 PMCID: PMC4824828 DOI: 10.1007/s10071-016-0968-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/18/2015] [Accepted: 02/12/2016] [Indexed: 10/30/2022]
Abstract
Metrical phonology is the perceptual "strength" in language of some syllables relative to others. The ability to perceive lexical stress is important, as it can help a listener segment speech and distinguish the meaning of words and sentences. Despite this importance, there has been little comparative work on the perception of lexical stress across species. We used a go/no-go operant paradigm to train human participants and budgerigars (Melopsittacus undulatus) to distinguish trochaic (stress-initial) from iambic (stress-final) two-syllable nonsense words. Once participants learned the task, we presented both novel nonsense words, and familiar nonsense words that had certain cues removed (e.g., pitch, duration, loudness, or vowel quality) to determine which cues were most important in stress perception. Members of both species learned the task and were then able to generalize to novel exemplars, showing categorical learning rather than rote memorization. Tests using reduced stimuli showed that humans could identify stress patterns with amplitude and pitch alone, but not with only duration or vowel quality. Budgerigars required more than one cue to be present and had trouble if vowel quality or amplitude were missing as cues. The results suggest that stress patterns in human speech can be decoded by other species. Further comparative stress-perception research with more species could help to determine what species characteristics predict this ability. In addition, tests with a variety of stimuli could help to determine how much this ability depends on general pattern learning processes versus vocalization-specific cues.
Collapse
|