1
|
Song Y, Liu Y, Wang Y, Huang X, Geng Y, Gong L, Feng J, Wu H, Jiang T. Effects of λ-cyhalothrin on the behavior and physiology of Leschenault's rousette bat (Rousettus leschenaultii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126417. [PMID: 40349820 DOI: 10.1016/j.envpol.2025.126417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
In addition to exerting direct toxic effects, pesticides disrupt the complex physiology and behavioral patterns of bats. Previous studies have focused on quantifying pesticide residues in bats. However, limited studies have examined the effects of pesticides on acoustic behavior, auditory health, and gene expression in bats. This study examined the effects of λ-cyhalothrin on vocalization, auditory health, and gene expression in Rousettus leschenaultii by integrating behavioral, cochlear pathological, and transcriptomic analyses. Exposure to low and high concentrations of λ-cyhalothrin increased the frequencies of social calls in R. leschenaultii. Histological analysis revealed that λ-cyhalothrin induced tympanic canal bleeding, Reissner's membrane rupture, and cell shedding in the tectorial membrane and the organ of Corti. Transcriptomic analysis revealed that λ-cyhalothrin significantly altered the enrichment of genes in Gene Ontology entries, especially those related to actin, transport protein for sodium-potassium ion channel, and the calcium pathway. These results suggest that λ-cyhalothrin exposure alters social calls in R. leschenaultii by inducing pathological damage and dysregulating gene expression in the cochlea. Thus, there is an urgent need to develop sustainable agricultural practices to mitigate pesticide impacts on bats and their ecological roles.
Collapse
Affiliation(s)
- Yanlin Song
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yujuan Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Xiaobin Huang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, 671000, Yunnan, China
| | - Yang Geng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Lixin Gong
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hui Wu
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.
| |
Collapse
|
2
|
Zhang C, Zheng Z, Lucas JR, Wang Y, Fan X, Zhao X, Feng J, Sun C, Jiang T. Do bats' social vocalizations conform to Zipf's law and the Menzerath-Altmann law? iScience 2024; 27:110401. [PMID: 39104571 PMCID: PMC11298857 DOI: 10.1016/j.isci.2024.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/18/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
The study of vocal communication in non-human animals can uncover the roots of human languages. Recent studies of language have focused on two linguistic laws: Zipf's law and the Menzerath-Altmann law. However, whether bats' social vocalizations follow these linguistic laws, especially Menzerath's law, has largely been unexplored. Here, we used Asian particolored bats, Vespertilio sinensis, to examine whether aggressive vocalizations conform to Zipf's and Menzerath's laws. Aggressive vocalizations of V. sinensis adhere to Zipf's law, with the most frequent syllables being the shortest in duration. There was a negative association between the syllable number within a call and the average syllable duration, in agreement with Menzerath's law. A decrease in the proportion of some long syllables and a decrease in the duration of several syllable types in long-duration calls explain the occurrence of this law. Our results indicate that a general compression principle organizes aspects of bat vocal communication systems.
Collapse
Affiliation(s)
- Chunmian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziqi Zheng
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Jeffrey R. Lucas
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China
| | - Yicheng Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin Fan
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Xin Zhao
- School of Psychology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Congnan Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
| |
Collapse
|
3
|
Kiai A, Clemens J, Kössl M, Poeppel D, Hechavarría J. Flexible control of vocal timing in Carollia perspicillata bats enables escape from acoustic interference. Commun Biol 2023; 6:1153. [PMID: 37957351 PMCID: PMC10643407 DOI: 10.1038/s42003-023-05507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
In natural environments, background noise can degrade the integrity of acoustic signals, posing a problem for animals that rely on their vocalizations for communication and navigation. A simple behavioral strategy to combat acoustic interference would be to restrict call emissions to periods of low-amplitude or no noise. Using audio playback and computational tools for the automated detection of over 2.5 million vocalizations from groups of freely vocalizing bats, we show that bats (Carollia perspicillata) can dynamically adapt the timing of their calls to avoid acoustic jamming in both predictably and unpredictably patterned noise. This study demonstrates that bats spontaneously seek out temporal windows of opportunity for vocalizing in acoustically crowded environments, providing a mechanism for efficient echolocation and communication in cluttered acoustic landscapes.
Collapse
Affiliation(s)
- Ava Kiai
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.
| | - Jan Clemens
- European Neuroscience Center, Göttingen, Germany
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - David Poeppel
- Ernst Strüngmann Institute, Frankfurt am Main, Germany
| | - Julio Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Lin A, Feng J, Kanwal JS. Geographic Variation in Social Vocalizations of the Great Himalayan Leaf-Nosed Bat, Hipposideros armiger: Acoustic Overflow Across Population Boundaries. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.948324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bat populations employ rich vocal repertoires for social communication in addition to emitting sound pulses for echolocation. Acoustic parameters of echolocation pulses can vary with the context in which they are emitted, and also with the individual and across populations as a whole. The acoustic parameters of social vocalizations, or “calls”, also vary with the individual and context, but not much is known about their variation across populations at different geographic locations. Here, we leveraged the detailed acoustic classification of social vocalizations available for the Great Himalayan leaf-nosed bat, Hipposideros armiger, to examine geographic variation in five commonly emitted simple syllable types. We hypothesized that individuals within geographically dispersed populations communicate using spectrographically similar constructs or “syllable types”. We also examined whether call syllables vary discordantly with the correlation pattern observed for echolocation pulses across those same geographic regions. Furthermore, we postulated that the acoustic boundaries of a syllable type are not uniquely constrained to its variation within a particular population of the same subspecies. To test our hypotheses, we obtained recordings of social calls of H. a. armiger from nine locations within the oriental region. These locations were consolidated into five geographic regions based on previously established region-specific differences in the peak frequency of echolocation pulses. A multivariate cluster analysis established that unlike echolocation pulses, syllable types exhibit a relatively large variance. Analysis of this variance showed significant differences in Least Squares Means estimates, establishing significant population-level differences in the multiparametric means of individual syllable types across geographic regions. Multivariate discriminant analysis confirmed the presence of region-specific centroids for different syllable constructs, but also showed a large overlap of their multiparametric boundaries across geographic regions. We propose that despite differences in the population-specific core construct of a syllable type, bats maximize acoustic variation across individuals within a population irrespective of its overflow and overlap with other populations.
Collapse
|
5
|
Maiditsch IP, Ladich F. Effects of noise on acoustic and visual signalling in the Croaking Gourami: differences in adaptation strategies in fish. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2022.2086174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Friedrich Ladich
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Zhao L, Wang T, Guo R, Zhai X, Zhou L, Cui J, Wang J. Differential effect of aircraft noise on the spectral-temporal acoustic characteristics of frog species. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Hörpel SG, Baier AL, Peremans H, Reijniers J, Wiegrebe L, Firzlaff U. Communication breakdown: Limits of spectro-temporal resolution for the perception of bat communication calls. Sci Rep 2021; 11:13708. [PMID: 34211004 PMCID: PMC8249457 DOI: 10.1038/s41598-021-92842-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
During vocal communication, the spectro-temporal structure of vocalizations conveys important contextual information. Bats excel in the use of sounds for echolocation by meticulous encoding of signals in the temporal domain. We therefore hypothesized that for social communication as well, bats would excel at detecting minute distortions in the spectro-temporal structure of calls. To test this hypothesis, we systematically introduced spectro-temporal distortion to communication calls of Phyllostomus discolor bats. We broke down each call into windows of the same length and randomized the phase spectrum inside each window. The overall degree of spectro-temporal distortion in communication calls increased with window length. Modelling the bat auditory periphery revealed that cochlear mechanisms allow discrimination of fast spectro-temporal envelopes. We evaluated model predictions with experimental psychophysical and neurophysiological data. We first assessed bats' performance in discriminating original versions of calls from increasingly distorted versions of the same calls. We further examined cortical responses to determine additional specializations for call discrimination at the cortical level. Psychophysical and cortical responses concurred with model predictions, revealing discrimination thresholds in the range of 8-15 ms randomization-window length. Our data suggest that specialized cortical areas are not necessary to impart psychophysical resilience to temporal distortion in communication calls.
Collapse
Affiliation(s)
- Stephen Gareth Hörpel
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising, Germany.
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - A Leonie Baier
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising, Germany
- Department Biology II, Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Martinsried, Germany
| | - Herbert Peremans
- Department of Engineering Management, Faculty of Business and Economics, University of Antwerp, 2000, Antwerp, Belgium
| | - Jonas Reijniers
- Department of Engineering Management, Faculty of Business and Economics, University of Antwerp, 2000, Antwerp, Belgium
| | - Lutz Wiegrebe
- Department Biology II, Ludwig Maximilians University Munich, Großhaderner Strasse 2, 82152, Martinsried, Germany
| | - Uwe Firzlaff
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
8
|
Duquette CA, Loss SR, Hovick TJ. A meta‐analysis of the influence of anthropogenic noise on terrestrial wildlife communication strategies. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Scott R. Loss
- Department of Natural Resource Ecology and Management Oklahoma State University Stillwater OK USA
| | - Torre J. Hovick
- Department of Range Science North Dakota State University Fargo ND USA
| |
Collapse
|
9
|
Bednarz PA. Do Decibels Matter? A Review of Effects of Traffic Noise on Terrestrial Small Mammals and Bats. POLISH JOURNAL OF ECOLOGY 2021. [DOI: 10.3161/15052249pje2020.68.4.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paula Antonina Bednarz
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego str. 6, 61–614 Poznań, Poland, e-mail:
| |
Collapse
|
10
|
Adverse effects of noise pollution on foraging and drinking behaviour of insectivorous desert bats. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00101-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Kehinde BA, Sharma P, Kaur S. Recent nano-, micro- and macrotechnological applications of ultrasonication in food-based systems. Crit Rev Food Sci Nutr 2020; 61:599-621. [PMID: 32208850 DOI: 10.1080/10408398.2020.1740646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is a neoteric and rising demand for nutritional and functional foods which behooves food processors to adopt processing techniques with optimal conservation of bioactive components in foods and with minimal pernicious impacts on the environment. Ultrasonication, a mechanochemical technique has proven to be an efficacious panacea to these concerns. In this review, an analytic exploration of recent researches and designs regarding ultrasound methodology and equipment on diverse food systems, technological scales, procedural parameters and outcomes of such experimentations optimally scrutinized. The relative effects of ultrasonication on food formulations, components and attributes such as nanoemulsions, nanocapsules, proteins, micronutrients, sensory and mechanical characteristics are evaluatively delineated. In food systems where ultrasonication was employed, it was found to have a remarkable effect on one or more quality parameters. This review is a supplementation to the pedagogical awareness to scholars on the suitability of ultrasonication for research procedures, and a call to industrial food brands on the adoption of this technique for the development of foods with optimally sustained nutrient profiles.
Collapse
Affiliation(s)
- Bababode Adesegun Kehinde
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
12
|
Shannon G, McKenna MF, Wilson-Henjum GE, Angeloni LM, Crooks KR, Wittemyer G. Vocal characteristics of prairie dog alarm calls across an urban noise gradient. Behav Ecol 2019. [DOI: 10.1093/beheco/arz200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Increasing anthropogenic noise is having a global impact on wildlife, particularly due to the masking of crucial acoustical communication. However, there have been few studies examining the impacts of noise exposure on communication in free-ranging terrestrial mammals. We studied alarm calls of black-tailed prairie dogs (Cynomys ludovicianus) across an urban gradient to explore vocal adjustment relative to different levels of noise exposure. There was no change in the frequency 5%, peak frequency, or duration of the alarm calls across the noise gradient. However, the minimum frequency—a commonly used, yet potentially compromised metric—did indeed show a positive relationship with noise exposure. We suspect this is a result of masking of observable call properties by noise, rather than behavioral adjustment. In addition, the proximity of conspecifics and the distance to the perceived threat (observer) did affect the frequency 5% of alarm calls. These results reveal that prairie dogs do not appear to be adjusting their alarm calls in noisy environments but likely do in relation to their social context and the proximity of a predatory threat. Anthropogenic noise can elicit a range of behavioral and physiological responses across taxa, but elucidating the specific mechanisms driving these responses can be challenging, particularly as these are not necessarily mutually exclusive. Our research sheds light on how prairie dogs appear to respond to noise as a source of increased risk, rather than as a distraction or through acoustical masking as shown in other commonly studied species (e.g., fish, songbirds, marine mammals).
Collapse
Affiliation(s)
- Graeme Shannon
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, UK
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Megan F McKenna
- Natural Sounds and Night Skies Division, National Park Service, Fort Collins, CO, USA
| | - Grete E Wilson-Henjum
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Lisa M Angeloni
- Department of Biology, Biology Building, Colorado State University, Fort Collins, CO, USA
| | - Kevin R Crooks
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
SONG S, LIN A, JIANG T, ZHAO X, METZNER W, FENG J. Bats adjust temporal parameters of echolocation pulses but not those of communication calls in response to traffic noise. Integr Zool 2019; 14:576-588. [PMID: 30811841 PMCID: PMC6900015 DOI: 10.1111/1749-4877.12387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many studies based on acute short-term noise exposure have demonstrated that animals can adjust their vocalizations in response to ambient noise. However, the effects of chronic noise over a relatively long time scale of multiple days remain largely unclear. Bats rely mainly on acoustic signals for perception of environmental and social communication. Nearly all previous studies on noise-induced vocal adjustments have focused on echolocation pulse sounds. Relatively little is known regarding the effects of noise on social communication calls. Here, we examined the dynamic changes in the temporal parameters of echolocation and communication vocalizations of Vespertilio sinensis when exposed to traffic noise over multiple days. We found that the bats started to modify their echolocation vocalizations on the fourth day of noise exposure, with an increase of 42-91% in the total number of pulse sequences per day. Under noisy conditions, the number of pulses within a pulse sequence decreased by an average of 17.2%, resulting in a significantly slower number of pulses/sequence (P < 0.001). However, there was little change in the duration of a pulse sequence. These parameters were not significantly adjusted in most communication vocalizations under the noise condition (all P > 0.05), except that the duration decreased and the number of syllables/sequences increased in 1 type of communicative vocalization (P < 0.05). This study suggests that bats routinely adjust temporal parameters of echolocation but rarely of communication vocalizations in response to noise condition.
Collapse
Affiliation(s)
- Shengjing SONG
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunJilinChina
| | - Aiqing LIN
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunJilinChina
| | - Tinglei JIANG
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunJilinChina
| | - Xin ZHAO
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunJilinChina
| | - Walter METZNER
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunJilinChina
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jiang FENG
- Jilin Provincial Key Laboratory of Animal Resource Conservation and UtilizationNortheast Normal UniversityChangchunJilinChina
- College of Life Science, Jilin Agricultural UniversityChangchunJilinChina
| |
Collapse
|
14
|
Mcloughlin MP, Stewart R, McElligott AG. Automated bioacoustics: methods in ecology and conservation and their potential for animal welfare monitoring. J R Soc Interface 2019; 16:20190225. [PMID: 31213168 PMCID: PMC6597774 DOI: 10.1098/rsif.2019.0225] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 11/12/2022] Open
Abstract
Vocalizations carry emotional, physiological and individual information. This suggests that they may serve as potentially useful indicators for inferring animal welfare. At the same time, automated methods for analysing and classifying sound have developed rapidly, particularly in the fields of ecology, conservation and sound scene classification. These methods are already used to automatically classify animal vocalizations, for example, in identifying animal species and estimating numbers of individuals. Despite this potential, they have not yet found widespread application in animal welfare monitoring. In this review, we first discuss current trends in sound analysis for ecology, conservation and sound classification. Following this, we detail the vocalizations produced by three of the most important farm livestock species: chickens ( Gallus gallus domesticus), pigs ( Sus scrofa domesticus) and cattle ( Bos taurus). Finally, we describe how these methods can be applied to monitor animal welfare with new potential for developing automated methods for large-scale farming.
Collapse
Affiliation(s)
- Michael P. Mcloughlin
- Centre for Digital Music, School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Campus, London, UK
| | - Rebecca Stewart
- Centre for Digital Music, School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Campus, London, UK
| | - Alan G. McElligott
- Centre for Research in Ecology, Evolution and Behaviour, Department of Life Sciences, University of Roehampton, London, UK
| |
Collapse
|
15
|
Chi T, Liu M, Tan X, Sun K, Jin L, Feng J. Syllable merging during ontogeny in Hipposideros larvatus. BIOACOUSTICS 2019. [DOI: 10.1080/09524622.2019.1610906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tingting Chi
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Muxun Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xiao Tan
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Jilin Provincial Engineering Laboratory of Avian Ecology and Conservation Genetics, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|