1
|
Zhang 张艳歌 Y, Wang 王天 T, Dai 戴伟枫 W, Li 李洋 Y, Yang 杨祎 Y, Wu 武宇洁 Y, Huang 黄见操 J, Zhou 周婷婷 T, Xing 邢大军 D. Pupillary Responses Reflect Dynamic Changes in Multiple Cognitive Factors During Associative Learning in Primates. J Neurosci 2024; 44:e2141232024. [PMID: 38514179 PMCID: PMC11063815 DOI: 10.1523/jneurosci.2141-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Associative learning involves complex interactions of multiple cognitive factors. While adult subjects can articulate these factors verbally, for model animals such as macaques, we rely on behavioral outputs. In our study, we used pupillary responses as an alternative measure to capture these underlying cognitive changes. We recorded the dynamic changes in the pupils of three male macaques when they learned the associations between visual stimuli and reward sizes under the classical Pavlovian experimental paradigm. We found that during the long-term learning process, the gradual changes in the pupillary response reflect the changes in the cognitive state of the animals. The pupillary response can be explained by a linear combination of components corresponding to multiple cognitive factors. These components reflect the impact of visual stimuli on the pupils, the prediction of reward values associated with the visual stimuli, and the macaques' understanding of the current experimental reward rules. The changing patterns of these factors during interday and intraday learning clearly demonstrate the enhancement of current reward-stimulus association and the weakening of previous reward-stimulus association. Our study shows that the dynamic response of pupils can serve as an objective indicator to characterize the psychological changes of animals, understand their learning process, and provide important tools for exploring animal behavior during the learning process.
Collapse
Affiliation(s)
- Yange Zhang 张艳歌
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang 王天
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Weifeng Dai 戴伟枫
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yang Li 李洋
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yi Yang 杨祎
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu 武宇洁
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jiancao Huang 黄见操
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tingting Zhou 周婷婷
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Dajun Xing 邢大军
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Young ME, Spencer-Salmon C, Mosher C, Tamang S, Rajan K, Rudebeck PH. Temporally specific patterns of neural activity in interconnected corticolimbic structures during reward anticipation. Neuron 2023; 111:3668-3682.e5. [PMID: 37586366 PMCID: PMC10840822 DOI: 10.1016/j.neuron.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Functional neuroimaging studies indicate that interconnected parts of the subcallosal anterior cingulate cortex (ACC), striatum, and amygdala play a fundamental role in affect in health and disease. Yet, although the patterns of neural activity engaged in the striatum and amygdala during affective processing are well established, especially during reward anticipation, less is known about subcallosal ACC. Here, we recorded neural activity in non-human primate subcallosal ACC and compared this with interconnected parts of the basolateral amygdala and rostromedial striatum while macaque monkeys performed reward-based tasks. Applying multiple analysis approaches, we found that neurons in subcallosal ACC and rostromedial striatum preferentially signal anticipated reward using short bursts of activity that form temporally specific patterns. By contrast, the basolateral amygdala uses a mixture of both temporally specific and more sustained patterns of activity to signal anticipated reward. Thus, dynamic patterns of neural activity across populations of neurons are engaged in affect, especially in subcallosal ACC.
Collapse
Affiliation(s)
- Megan E Young
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Camille Spencer-Salmon
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Clayton Mosher
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sarita Tamang
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kanaka Rajan
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Peter H Rudebeck
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
3
|
Matyjek M, Bayer M, Dziobek I. Reward responsiveness in autism and autistic traits - Evidence from neuronal, autonomic, and behavioural levels. Neuroimage Clin 2023; 38:103442. [PMID: 37285795 PMCID: PMC10250120 DOI: 10.1016/j.nicl.2023.103442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Autism has been linked to atypicalities in reward processing, especially in the social domain. However, results are heterogeneous, and their interpretation is hindered by the use of personally non-relevant social rewards. In this study we investigated behavioural (reaction times), neuronal (event-related potentials), and autonomic (pupil sizes) responses to personally relevant social rewards, money, and neutral outcomes in 26 autistic and 53 non-autistic subjects varying in levels of autistic traits. As hypothesised and preregistered, autism and autistic traits did not differently influence responses to social, monetary, or neutral outcomes on either response level. While groups did not differ in behaviour (reaction times), autism was linked to generally enhanced brain responses in early anticipation and larger pupil constrictions in reward reception. Together, these results suggest that when using personally relevant stimuli, autism is linked to generally preserved, although less neuronally efficient processing of rewards. Considering the role of social relevance in reward processing, we propose an interpretation of contradictory evidence from clinical practice and empirical research.
Collapse
Affiliation(s)
- Magdalena Matyjek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany.
| | - Mareike Bayer
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany
| |
Collapse
|
4
|
Antono JE, Vakhrushev R, Pooresmaeili A. Value-driven modulation of visual perception by visual and auditory reward cues: The role of performance-contingent delivery of reward. Front Hum Neurosci 2022; 16:1062168. [PMID: 36618995 PMCID: PMC9816136 DOI: 10.3389/fnhum.2022.1062168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Perception is modulated by reward value, an effect elicited not only by stimuli that are predictive of performance-contingent delivery of reward (PC) but also by stimuli that were previously rewarded (PR). PC and PR cues may engage different mechanisms relying on goal-driven versus stimulus-driven prioritization of high value stimuli, respectively. However, these two modes of reward modulation have not been systematically compared against each other. This study employed a behavioral paradigm where participants' visual orientation discrimination was tested in the presence of task-irrelevant visual or auditory reward cues. In the first phase (PC), correct performance led to a high or low monetary reward dependent on the identity of visual or auditory cues. In the subsequent phase (PR), visual or auditory cues were not followed by reward delivery anymore. We hypothesized that PC cues have a stronger modulatory effect on visual discrimination and pupil responses compared to PR cues. We found an overall larger task-evoked pupil dilation in PC compared to PR phase. Whereas PC and PR cues both increased the accuracy of visual discrimination, value-driven acceleration of reaction times (RTs) and pupillary responses only occurred for PC cues. The modulation of pupil size by high reward PC cues was strongly correlated with the modulation of a combined measure of speed and accuracy. These results indicate that although value-driven modulation of perception can occur even when reward delivery is halted, stronger goal-driven control elicited by PC reward cues additionally results in a more efficient balance between accuracy and speed of perceptual choices.
Collapse
Affiliation(s)
- Jessica Emily Antono
- Perception and Cognition Lab, European Neuroscience Institute Göttingen–A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-Society, Göttingen, Germany
| | | | - Arezoo Pooresmaeili
- Perception and Cognition Lab, European Neuroscience Institute Göttingen–A Joint Initiative of the University Medical Center Göttingen and the Max-Planck-Society, Göttingen, Germany
| |
Collapse
|
5
|
Selezneva E, Brosch M, Rathi S, Vighneshvel T, Wetzel N. Comparison of Pupil Dilation Responses to Unexpected Sounds in Monkeys and Humans. Front Psychol 2021; 12:754604. [PMID: 35002851 PMCID: PMC8732861 DOI: 10.3389/fpsyg.2021.754604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Pupil dilation in response to unexpected stimuli has been well documented in human as well as in non-human primates; however, this phenomenon has not been systematically compared between the species. This analogy is also crucial for the role of non-human primates as an animal model to investigate neural mechanisms underlying the processing of unexpected stimuli and their evoked pupil dilation response. To assess this qualitatively, we used an auditory oddball paradigm in which we presented subjects a sequence of the same sounds followed by occasional deviants while we measured their evoked pupil dilation response (PDR). We used deviants (a frequency deviant, a pink noise burst, a monkey vocalization and a whistle sound) which differed in the spectral composition and in their ability to induce arousal from the standard. Most deviants elicited a significant pupil dilation in both species with decreased peak latency and increased peak amplitude in monkeys compared to humans. A temporal Principal Component Analysis (PCA) revealed two components underlying the PDRs in both species. The early component is likely associated to the parasympathetic nervous system and the late component to the sympathetic nervous system, respectively. Taken together, the present study demonstrates a qualitative similarity between PDRs to unexpected auditory stimuli in macaque and human subjects suggesting that macaques can be a suitable model for investigating the neuronal bases of pupil dilation. However, the quantitative differences in PDRs between species need to be investigated in further comparative studies.
Collapse
Affiliation(s)
- Elena Selezneva
- Research Group Neurocognitive Development, Leibniz Institute for Neurobiology, Magdeburg, Germany
- *Correspondence: Elena Selezneva,
| | - Michael Brosch
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Sanchit Rathi
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - T. Vighneshvel
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nicole Wetzel
- Research Group Neurocognitive Development, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
- Department of Applied Human Sciences, Magdeburg-Stendal University of Applied Sciences, Magdeburg, Germany
| |
Collapse
|
6
|
He X, Liu W, Qin N, Lyu L, Dong X, Bao M. Performance-dependent reward hurts performance: The non-monotonic attentional load modulation on task-irrelevant distractor processing. Psychophysiology 2021; 58:e13920. [PMID: 34383329 DOI: 10.1111/psyp.13920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
Selective attention is essential when we face sensory inputs with distractions. In the past decades, Lavie's load theory of selective attention delineates a complete picture of distractor suppression under different attentional control load. The present study was originally designed to explore how reward modulates the load effect of attentional selection. Unexpectedly, it revealed new findings under extended attentional load that was not involved in previous work. Participants were asked to complete a rewarded attentive visual tracking task while presented with irrelevant auditory oddball stimuli, with their behavioral performance, event-related potentials and pupillary responses recorded. We found that although the behavioral performance and pupil sizes varied unidirectionally with the attentional load, the processing of distractors as reflected by the mismatch negativity (MMN) increased first and then decreased. In contrast to the prediction of Lavie's theory that attentional control fails to effectively suppress distractor processing under high attentional control load, our finding suggests that extremely high attentional control load may instead require suppression of distractor processing at a stage as early as possible. Besides, P3a, a positive-polarity response sometimes following the MMN, was not affected by the attentional load, but both N1 (a negative-polarity component peaking ~100 ms from sound onset) and P3a were weakened at higher reward, indicating that reward leads to attenuated early processing of distractor and thus suppresses the attentional orienting towards distractors. These findings altogether complement Lavie's load theory of selective attention, presenting a more complex picture of how attentional load and reward affects selective attention.
Collapse
Affiliation(s)
- Xin He
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Weilin Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Nan Qin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Bao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Tardiff N, Medaglia JD, Bassett DS, Thompson-Schill SL. The modulation of brain network integration and arousal during exploration. Neuroimage 2021; 240:118369. [PMID: 34242784 PMCID: PMC8507424 DOI: 10.1016/j.neuroimage.2021.118369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
There is growing interest in how neuromodulators shape brain networks. Recent neuroimaging studies provide evidence that brainstem arousal systems, such as the locus coeruleus-norepinephrine system (LC-NE), influence functional connectivity and brain network topology, suggesting they have a role in flexibly reconfiguring brain networks in order to adapt behavior and cognition to environmental demands. To date, however, the relationship between brainstem arousal systems and functional connectivity has not been assessed within the context of a task with an established relationship between arousal and behavior, with most prior studies relying on incidental variations in arousal or pharmacological manipulation and static brain networks constructed over long periods of time. These factors have likely contributed to a heterogeneity of effects across studies. To address these issues, we took advantage of the association between LC-NE-linked arousal and exploration to probe the relationships between exploratory choice, arousal—as measured indirectly via pupil diameter—and brain network dynamics. Exploration in a bandit task was associated with a shift toward fewer, more weakly connected modules that were more segregated in terms of connectivity and topology but more integrated with respect to the diversity of cognitive systems represented in each module. Functional connectivity strength decreased, and changes in connectivity were correlated with changes in pupil diameter, in line with the hypothesis that brainstem arousal systems influence the dynamic reorganization of brain networks. More broadly, we argue that carefully aligning dynamic network analyses with task designs can increase the temporal resolution at which behaviorally- and cognitively-relevant modulations can be identified, and offer these results as a proof of concept of this approach.
Collapse
Affiliation(s)
- Nathan Tardiff
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States.
| | - John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, United States; Department of Neurology, Drexel University, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Danielle S Bassett
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, United States; Santa Fe Institute, Santa Fe, NM, United States
| | | |
Collapse
|
8
|
Matyjek M, Bayer M, Dziobek I. Pupillary Responses to Faces Are Modulated by Familiarity and Rewarding Context. Brain Sci 2021; 11:brainsci11060794. [PMID: 34208579 PMCID: PMC8235004 DOI: 10.3390/brainsci11060794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
Observing familiar (known, recognisable) and socially relevant (personally important) faces elicits activation in the brain’s reward circuit. Although smiling faces are often used as social rewards in research, it is firstly unclear whether familiarity and social relevance modulate the processing of faces differently, and secondly whether this processing depends on the feedback context, i.e., if it is different when smiles are delivered depending on performance or in the absence of any action (passive viewing). In this preregistered study, we compared pupillary responses to smiling faces differing in subjective familiarity and social relevance. They were displayed in a passive viewing task and in an active task (a speeded visual short-term memory task). The pupils were affected only in the active task and only by subjective familiarity. Contrary to expectations, smaller dilations were observed in response to more familiar faces. Behavioural ratings supported the superior rewarding context of the active task, with higher reward ratings for the game than the passive task. This study offers two major insights. Firstly, familiarity plays a role in the processing of social rewards, as known and unknown faces influence the autonomic responses differently. Secondly, the feedback context is crucial in reward research as positive stimuli are rewarding when they are dependent on performance.
Collapse
Affiliation(s)
- Magdalena Matyjek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; (M.B.); (I.D.)
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany
- Correspondence:
| | - Mareike Bayer
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; (M.B.); (I.D.)
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstr. 56, 10117 Berlin, Germany; (M.B.); (I.D.)
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee, 12489 Berlin, Germany
| |
Collapse
|
9
|
Reward anticipation selectively boosts encoding of gist for visual objects. Sci Rep 2020; 10:20196. [PMID: 33214646 PMCID: PMC7677401 DOI: 10.1038/s41598-020-77369-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022] Open
Abstract
Reward anticipation at encoding enhances later recognition, but it is unknown to what extent different levels of processing at encoding (gist vs. detail) can benefit from reward-related memory enhancement. In the current study, participants (N = 50) performed an incidental encoding task in which they made gist-related or detail-related judgments about pairs of visual objects while in anticipation of high or low reward. Results of a subsequent old/new recognition test revealed a reward-related memory benefit that was specific to objects from pairs encoded in the attention-to-gist condition. These findings are consistent with the theory of long-axis specialization along the human hippocampus, which localizes gist-based memory processes to the anterior hippocampus, a region highly interconnected with the dopaminergic reward network.
Collapse
|
10
|
Basile BM, Schafroth JL, Karaskiewicz CL, Chang SWC, Murray EA. The anterior cingulate cortex is necessary for forming prosocial preferences from vicarious reinforcement in monkeys. PLoS Biol 2020; 18:e3000677. [PMID: 32530910 PMCID: PMC7292358 DOI: 10.1371/journal.pbio.3000677] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
A key feature of most social relationships is that we like seeing good things happen to others. Research has implicated the anterior cingulate cortex (ACC) in attaching value to social outcomes. For example, single neurons in macaque ACC selectively code reward delivery to the self, a partner, both monkeys, or neither monkey. Here, we assessed whether the ACC's contribution to social cognition is causal by testing rhesus monkeys (Macaca mulatta) on a vicarious reinforcement task before and after they sustained ACC lesions. Prior to surgery, actors learned that 3 different visual cues mapped onto 3 distinct reward outcomes: to self ("Self"), to the other monkey ("Other"), or to neither monkey ("Neither"). On each trial, actors saw a cue that predicted one of the 3 juice offers and could accept the offer by making a saccade to a peripheral target or reject the offer by breaking fixation. Preoperatively, all 6 actors displayed prosocial preferences, indicated by their greater tendency to give reward to Other relative to Neither. Half then received selective, bilateral, excitotoxic lesions of the ACC, and the other half served as unoperated controls. After surgery, all monkeys retained the social preferences they had demonstrated with the preoperatively learned cues, but this preference was reduced in the monkeys with ACC lesions. Critically, none of the monkeys in the ACC lesion group acquired social preferences with a new set of cues introduced after surgery. These data indicate that the primate ACC is necessary for acquisition of prosocial preferences from vicarious reinforcement.
Collapse
Affiliation(s)
- Benjamin M. Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jamie L. Schafroth
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chloe L. Karaskiewicz
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steve W. C. Chang
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Elisabeth A. Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Peinkhofer C, Knudsen GM, Moretti R, Kondziella D. Cortical modulation of pupillary function: systematic review. PeerJ 2019; 7:e6882. [PMID: 31119083 PMCID: PMC6510220 DOI: 10.7717/peerj.6882] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The pupillary light reflex is the main mechanism that regulates the pupillary diameter; it is controlled by the autonomic system and mediated by subcortical pathways. In addition, cognitive and emotional processes influence pupillary function due to input from cortical innervation, but the exact circuits remain poorly understood. We performed a systematic review to evaluate the mechanisms behind pupillary changes associated with cognitive efforts and processing of emotions and to investigate the cerebral areas involved in cortical modulation of the pupillary light reflex. METHODOLOGY We searched multiple databases until November 2018 for studies on cortical modulation of pupillary function in humans and non-human primates. Of 8,809 papers screened, 258 studies were included. RESULTS Most investigators focused on pupillary dilatation and/or constriction as an index of cognitive and emotional processing, evaluating how changes in pupillary diameter reflect levels of attention and arousal. Only few tried to correlate specific cerebral areas to pupillary changes, using either cortical activation models (employing micro-stimulation of cortical structures in non-human primates) or cortical lesion models (e.g., investigating patients with stroke and damage to salient cortical and/or subcortical areas). Results suggest the involvement of several cortical regions, including the insular cortex (Brodmann areas 13 and 16), the frontal eye field (Brodmann area 8) and the prefrontal cortex (Brodmann areas 11 and 25), and of subcortical structures such as the locus coeruleus and the superior colliculus. CONCLUSIONS Pupillary dilatation occurs with many kinds of mental or emotional processes, following sympathetic activation or parasympathetic inhibition. Conversely, pupillary constriction may occur with anticipation of a bright stimulus (even in its absence) and relies on a parasympathetic activation. All these reactions are controlled by subcortical and cortical structures that are directly or indirectly connected to the brainstem pupillary innervation system.
Collapse
Affiliation(s)
- Costanza Peinkhofer
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Medical Faculty, University of Trieste, Trieste, Italy
| | - Gitte M. Knudsen
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Neurobiology Research Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Rita Moretti
- Medical Faculty, University of Trieste, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, Neurological Unit, Trieste University Hospital, Cattinara, Trieste, Italy
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Norwegian University of Technology and Science, Trondheim, Norway
| |
Collapse
|