1
|
Coppola VJ, Caram HE, Robeson C, Beeler SM, Hebets EA, Wiegmann DD, Bingman VP. Investigating boundary-geometry use by whip spiders (Phrynus marginemaculatus) during goal-directed navigation. Learn Behav 2024; 52:170-178. [PMID: 37620643 DOI: 10.3758/s13420-023-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Previous studies have shown that whip spiders (Amblypygi) can use a variety of cues to navigate to and recognize a home refuge. The current study aimed to determine whether whip spiders were capable of using the boundary geometry of an experimental space (geometric information) to guide goal-directed navigation and to investigate any preferential use of geometric or feature (visual) information. Animals were first trained to find a goal location situated in one corner of a rectangular arena (geometric information) fronting a dark-green-colored wall, which created a brightness contrast with the other three white walls (feature information). Various probe trials were then implemented to determine cue use. It was found that animals were capable of directing their choice behavior towards geometrically correct corners at a rate significantly higher than chance, even when the feature cue was removed. By contrast, choice behavior dropped to random chance when geometric information was removed (test in a square arena) and only feature information remained. Choice behavior was also reduced to chance when geometric and feature information were set in conflict (by moving the feature cue to one of the longer walls in the rectangular arena). The data thus suggest that whip spiders are capable of using geometric information to guide goal-directed navigation and that geometric information is preferred over feature guidance, although a feature cue may set the context for activating geometry-guided navigation. Experimental design limitations and future directions are discussed.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA.
| | - Hannah E Caram
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Cecilia Robeson
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Sophia M Beeler
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
2
|
Ortega-Escobar J, Hebets EA, Bingman VP, Wiegmann DD, Gaffin DD. Comparative biology of spatial navigation in three arachnid orders (Amblypygi, Araneae, and Scorpiones). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01612-2. [PMID: 36781447 DOI: 10.1007/s00359-023-01612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
From both comparative biology and translational research perspectives, there is escalating interest in understanding how animals navigate their environments. Considerable work is being directed towards understanding the sensory transduction and neural processing of environmental stimuli that guide animals to, for example, food and shelter. While much has been learned about the spatial orientation behavior, sensory cues, and neurophysiology of champion navigators such as bees and ants, many other, often overlooked animal species possess extraordinary sensory and spatial capabilities that can broaden our understanding of the behavioral and neural mechanisms of animal navigation. For example, arachnids are predators that often return to retreats after hunting excursions. Many of these arachnid central-place foragers are large and highly conducive to scientific investigation. In this review we highlight research on three orders within the Class Arachnida: Amblypygi (whip spiders), Araneae (spiders), and Scorpiones (scorpions). For each, we describe (I) their natural history and spatial navigation, (II) how they sense the world, (III) what information they use to navigate, and (IV) how they process information for navigation. We discuss similarities and differences among the groups and highlight potential avenues for future research.
Collapse
Affiliation(s)
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Verner P Bingman
- Department of Psychology and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences and J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Douglas D Gaffin
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
3
|
Lehmann KDS, Shogren FG, Fallick M, Watts JC, Schoenberg D, Wiegmann DD, Bingman VP, Hebets EA. Exploring Higher-Order Conceptual Learning in an Arthropod with a Large Multisensory Processing Center. INSECTS 2022; 13:insects13010081. [PMID: 35055924 PMCID: PMC8780652 DOI: 10.3390/insects13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary It is difficult to measure animal intelligence because the definition of ‘intelligence’ varies, and many animals are good at specific tasks used to measure intelligence or cognition. To address this, scientists often look for evidence of common cognitive abilities. One such ability, the ability to learn concepts, is thought to be rare in animals, especially invertebrates. Concepts include the ideas of ‘same’ and ‘different’. These concepts can be applied to anything in the environment while also being independent of those objects and can help animals understand and survive their environment. Amblypygids, a relative of spiders, live in tropical and subtropical areas, are very good learners, and have a large, complex brain region known to process information from multiple senses. We tested whether amblypygids could learn the concept of ‘same’ by training them to move toward a stimulus that matched with an initial stimulus. We also trained some individuals to learn the concept ‘different’ by training them to move toward a non-matching stimulus. When we used new stimuli, the amblypygids did not move toward the correct stimulus significantly more often than the incorrect stimulus, suggesting either they are unable to learn these higher-order concepts or our experimental design failed to elicit that ability. Abstract Comparative cognition aims to understand the evolutionary history and current function of cognitive abilities in a variety of species with diverse natural histories. One characteristic often attributed to higher cognitive abilities is higher-order conceptual learning, such as the ability to learn concepts independent of stimuli—e.g., ‘same’ or ‘different’. Conceptual learning has been documented in honeybees and a number of vertebrates. Amblypygids, nocturnal enigmatic arachnids, are good candidates for higher-order learning because they are excellent associational learners, exceptional navigators, and they have large, highly folded mushroom bodies, which are brain regions known to be involved in learning and memory in insects. In Experiment 1, we investigate if the amblypygid Phrynus marginimaculatus can learn the concept of same with a delayed odor matching task. In Experiment 2, we test if Paraphrynus laevifrons can learn same/different with delayed tactile matching and nonmatching tasks before testing if they can transfer this learning to a novel cross-modal odor stimulus. Our data provide no evidence of conceptual learning in amblypygids, but more solid conclusions will require the use of alternative experimental designs to ensure our negative results are not simply a consequence of the designs we employed.
Collapse
Affiliation(s)
- Kenna D. S. Lehmann
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Fiona G. Shogren
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Mariah Fallick
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - James Colton Watts
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel Schoenberg
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Daniel D. Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Verner P. Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA;
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Eileen A. Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
- Correspondence:
| |
Collapse
|
4
|
Flanigan KAS, Wiegmann DD, Casto P, Coppola VJ, Flesher NR, Hebets EA, Bingman VP. Visual control of refuge recognition in the whip spider Phrynus marginemaculatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:729-737. [PMID: 34591165 DOI: 10.1007/s00359-021-01509-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023]
Abstract
Amblypygids, or whip spiders, are nocturnally active arachnids which live in structurally complex environments. Whip spiders are excellent navigators that can re-locate a home refuge without relying on visual input. Therefore, an open question is whether visual input can control any aspect of whip spider spatial behavior. In the current study, Phrynus marginemaculatus were trained to locate an escape refuge by discriminating between differently oriented black and white stripes placed either on the walls of a testing arena (frontal discrimination) or on the ceiling of the same testing arena (overhead discrimination). Regardless of the placement of the visual stimuli, the whip spiders were successful in learning the location of the escape refuge. In a follow-up study of the overhead discrimination, occluding the median eyes was found to disrupt the ability of the whip spiders to locate the shelter. The data support the conclusion that whip spiders can rely on vision to learn and recognize an escape shelter. We suggest that visual inputs to the brain's mushroom bodies enable this ability.
Collapse
Affiliation(s)
- Kaylyn A S Flanigan
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA. .,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.
| | - Daniel D Wiegmann
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Patrick Casto
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA.,Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Natasha R Flesher
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
5
|
Grob R, el Jundi B, Fleischmann PN. Towards a common terminology for arthropod spatial orientation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1905075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Robin Grob
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Basil el Jundi
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Pauline N. Fleischmann
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
6
|
Sergi CM, Antonopoulos T, Rodríguez RL. Black widow spiders use path integration on their webs. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03009-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Goedeker SJ, Wrynn TE, Gall BG. Orientation behavior of riparian long-jawed orb weavers ( Tetragnatha elongata) after displacement over water. Ecol Evol 2021; 11:2899-2906. [PMID: 33767845 PMCID: PMC7981236 DOI: 10.1002/ece3.7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/06/2022] Open
Abstract
Many organisms possess remarkable abilities to orient and navigate within their environment to achieve goals. We examined the orientation behavior of a riparian spider, the Long-Jawed Orb Weaver (Tetragnatha elongata), when displaced onto the surface of the water. When displaced, spiders move with alternating movements of the first three leg pairs while dragging the most posterior pair of legs behind them. In addition, spiders often perform a series of orientation behaviors consisting of concentric circles before ultimately choosing a path of travel directly toward the nearest point to land. While the number of orientation behaviors increased with increasing distance from shore, distance from shore had no effect on the direction of travel, which was significantly oriented toward the closest shoreline. These results indicate a complex ability to orient toward land when displaced onto water, possibly to decrease the amount of time on the surface of the water and thus decrease predation risk.
Collapse
|
8
|
Flanigan KAS, Wiegmann DD, Hebets EA, Bingman VP. Multisensory integration supports configural learning of a home refuge in the whip spider Phrynus marginemaculatus. J Exp Biol 2021; 224:jeb.238444. [PMID: 33436366 DOI: 10.1242/jeb.238444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Whip spiders (Amblypygi) reside in structurally complex habitats and are nocturnally active yet display notable navigational abilities. From the theory that uncertainty in sensory inputs should promote multisensory representations to guide behavior, we hypothesized that their navigation is supported by a multisensory and perhaps configural representation of navigational inputs, an ability documented in a few insects and never reported in arachnids. We trained Phrynus marginemaculatus to recognize a home shelter characterized by both discriminative olfactory and tactile stimuli. In tests, subjects readily discriminated between shelters based on the paired stimuli. However, subjects failed to recognize the shelter in tests with either of the component stimuli alone. This result is consistent with the hypothesis that the terminal phase of their navigational behavior, shelter recognition, can be supported by the integration of multisensory stimuli as an enduring, configural representation. We hypothesize that multisensory learning occurs in the whip spiders' extraordinarily large mushroom bodies, which may functionally resemble the hippocampus of vertebrates.
Collapse
Affiliation(s)
- Kaylyn A S Flanigan
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA .,Department of Psychology, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| |
Collapse
|