1
|
Cauchard L, Bize P, Doligez B. How to solve novel problems: the role of associative learning in problem-solving performance in wild great tits Parus major. Anim Cogn 2024; 27:32. [PMID: 38607427 PMCID: PMC11014811 DOI: 10.1007/s10071-024-01872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Although problem-solving tasks are frequently used to assess innovative ability, the extent to which problem-solving performance reflects variation in cognitive skills has been rarely formally investigated. Using wild breeding great tits facing a new non-food motivated problem-solving task, we investigated the role of associative learning in finding the solution, compared to multiple other non-cognitive factors. We first examined the role of accuracy (the proportion of contacts made with the opening part of a string-pulling task), neophobia, exploration, activity, age, sex, body condition and participation time on the ability to solve the task. To highlight the effect of associative learning, we then compared accuracy between solvers and non-solvers, before and after the first cue to the solution (i.e., the first time they pulled the string opening the door). We finally compared accuracy over consecutive entrances for solvers. Using 884 observations from 788 great tits tested from 2010 to 2015, we showed that, prior to initial successful entrance, solvers were more accurate and more explorative than non-solvers, and that females were more likely to solve the task than males. The accuracy of solvers, but not of non-solvers, increased significantly after they had the opportunity to associate string pulling with the movement of the door, giving them a first cue to the task solution. The accuracy of solvers also increased over successive entrances. Our results demonstrate that variations in problem-solving performance primarily reflect inherent individual differences in associative learning, and are also to a lesser extent shaped by sex and exploratory behaviour.
Collapse
Affiliation(s)
- Laure Cauchard
- School of Biological Sciences, University of Aberdeen, Aberdeen, U.K..
- Anthropogenic Effects Research Group, Swiss Ornithological Institute, CH-62024, Sempach, Switzerland.
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, U.K
- Anthropogenic Effects Research Group, Swiss Ornithological Institute, CH-62024, Sempach, Switzerland
| | - Blandine Doligez
- Department of Biometry and Evolutionary Biology, CNRS, Univ Lyon, UMR 5558, University of Lyon 1, Villeurbanne, France
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Harris H, Wat KKY, Banks PB, Greenville A, McArthur C. Grow up, be persistent, and stay focused: keys for solving foraging problems by free-ranging possums. Behav Ecol 2023; 34:790-803. [PMID: 38046238 PMCID: PMC10690113 DOI: 10.1093/beheco/arad054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 12/05/2023] Open
Abstract
Individuals within a species often vary in both their problem-solving approach and ability, affecting their capacity to access novel food resources. Testing problem-solving in free-ranging individuals is crucial for understanding the fundamental ecological implications of problem-solving capacity. To examine the factors affecting problem-solving in free-ranging animals, we presented three food-extraction tasks of increasing difficulty to urban common brushtail possums (Trichosurus vulpecula). We quantified two measures of problem-solving performance: trial outcome (success/failure) and time to solve and tested the influence of a range of potential drivers, including individual traits (personality, body weight, sex, and age), mechanistic behaviors that quantify problem-solving approach (work time, functional behavior time, behavioral diversity, and flexibility), and prior experience with the puzzles. We found that mechanistic behaviors were key drivers of performance. Individuals displaying greater persistence (higher work and functional behavior time) were more likely to solve a food-extraction task on their first attempt. Individuals also solved problems faster if they were more persistent and had lower behavioral flexibility. Personality indirectly affected time to solve one of the three problems by influencing time allocated to functional behaviors. Finally, adults solved the most difficult problem faster than juveniles. Overall, our study provides rare insight into the drivers underlying the problem-solving performance of wild animals. Such insight could be used to improve management strategies and conservation efforts, such as food or bait deployment, tailored to suit the innovative foraging abilities of target individuals in new and changing environments.
Collapse
Affiliation(s)
- Hannah Harris
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Katie K Y Wat
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Peter B Banks
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Aaron Greenville
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building (A08), Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Rochais C, Schradin C, Pillay N. Cognitive performance is linked to survival in free-living African striped mice. Proc Biol Sci 2023; 290:20230205. [PMID: 36883277 PMCID: PMC9993040 DOI: 10.1098/rspb.2023.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Cognition is shaped by evolution and is predicted to increase fitness. However, the link between cognition and fitness in free-living animals is unresolved. We studied the correlates of cognition and survival in a free-living rodent inhabiting an arid environment. We tested 143 striped mice (Rhabdomys pumilio) using a battery of cognitive tests, including: (i) an attention task, (ii) two problem-solving tasks, (iii) a learning and reversal learning task, and (iv) an inhibitory control task. We related cognitive performance with days of survival. Better problem-solving and inhibitory control performance were significant correlates of survival. Surviving males showed greater reversal learning which may be related to sex-specific behavioural and life-history characteristics. Specific cognitive traits and not a composite measure of general intelligence underpins fitness in this free-living rodent population, enhancing our understanding of the evolution of cognition in non-human animals.
Collapse
Affiliation(s)
- Celine Rochais
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| | - Carsten Schradin
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
- IPHC, UNISTRA, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| |
Collapse
|
4
|
Lalot M, Bovet D. Prosociality and reciprocity according to parental status, communication, and personality in domestic canaries (Serinus canaria). Behav Processes 2023; 205:104818. [PMID: 36584962 DOI: 10.1016/j.beproc.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Prosociality (behaviours that benefit to a recipient without necessarily involving a cost to the actor) has recently been shown to exist in various taxa, including birds. Studies on prosociality in primates found that prosocial tendencies of the subject could be related to sex and parental care, communication from the recipient, cognitive abilities and personality. To investigate the existence of such associations on birds, we conducted a Prosocial Choice Task with domestic canaries (Serinus canaria). In our experiment, the subject could choose between three options: a prosocial, a selfish, and a null option (with no cost for the subject). We also conducted a food sharing experiment and measured several personality traits. Our results highlighted high levels of prosociality and a tendency to reciprocity among reproductive mates. We found a higher propensity to be prosocial in nulliparous individuals than in individuals that have previously been parents, but better sharing abilities in parents than in nulliparous individuals. When they were recipient, parents also used communication more efficiently than nulliparous subjects. Data suggest that parental expertise could enhance subjects' skills in eliciting prosociality. We also highlighted some interaction between prosociality, learning abilities, and some personality traits, proactive individuals being fast learners and more prosocial, while reactive individuals being slow learners and more reciprocal. Our results suggest that prosociality and reciprocity could be linked to personality and cognitive abilities, and that it might be interesting to consider them as parts of individual's cognitive style.
Collapse
Affiliation(s)
- Mathilde Lalot
- Laboratoire Ethologie Cognition Développement, UPL, Université Paris Nanterre, F92000 Nanterre, France.
| | - Dalila Bovet
- Laboratoire Ethologie Cognition Développement, UPL, Université Paris Nanterre, F92000 Nanterre, France
| |
Collapse
|
5
|
Finkemeier MA, Krause A, Tuchscherer A, Puppe B, Langbein J. Personality traits affect learning performance in dwarf goats ( Capra hircus). Front Vet Sci 2022; 9:916459. [PMID: 35909682 PMCID: PMC9336648 DOI: 10.3389/fvets.2022.916459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
A wide range of species exhibit time- and context-consistent interindividual variation in a number of specific behaviors related to an individual's personality. Several studies have shown that individual differences in personality-associated behavioral traits have an impact on cognitive abilities. The aim of this study was to investigate the relationship between personality traits and learning abilities in dwarf goats. The behavior of 95 goats during a repeated open field (OF) and novel object test (NO) was analyzed, and two main components were identified using principal component analysis: boldness and activity. In parallel, the goats learned a 4-choice visual initial discrimination task (ID) and three subsequent reversal learning (RL) tasks. The number of animals that reached the learning criterion and the number of trials needed (TTC) in each task were calculated. Our results show that goats with the lowest learning performance in ID needed more TTC in RL1 and reached the learning criterion less frequently in RL2 and RL3 compared to animals with better learning performance in ID. This suggests a close relationship between initial learning and flexibility in learning behavior. To study the link between personality and learning, we conducted two analyses, one using only data from the first OF- and NO-test (momentary personality traits), while the other included both tests integrating only animals that were stable for their specific trait (stable personality traits). No relationship between personality and learning was found using data from only the first OF- and NO-test. However, stability in the trait boldness was found to have an effect on learning. Unbold goats outperformed bold goats in RL1. This finding supports the general hypothesis that bold animals tend to develop routines and show less flexibility in the context of learning than unbold individuals. Understanding how individual personality traits can affect cognitive abilities will help us gain insight into mechanisms that can constrain cognitive processing and adaptive behavioral responses.
Collapse
Affiliation(s)
- Marie-Antonine Finkemeier
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Annika Krause
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Jan Langbein
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
6
|
Szabo B, Valencia-Aguilar A, Damas-Moreira I, Ringler E. Wild cognition - linking form and function of cognitive abilities within a natural context. Curr Opin Behav Sci 2022; 44:101115. [PMID: 38989158 PMCID: PMC7616152 DOI: 10.1016/j.cobeha.2022.101115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interest in studying cognitive ecology has moved the field of animal cognition into the wild. Animals face many challenges such as finding food and other resources, avoiding and deterring predators and choosing the best mate to increase their reproductive success. To solve these dilemmas, animals need to rely on a range of cognitive abilities. Studying cognition in natural settings is a powerful approach revealing the link between adaptive form and biological function. Recent technological and analytical advances opened up completely new opportunities and research directions for studying animal cognition. Such innovative studies were able to disclose the variety in cognitive processes that animals use to survive and reproduce. Cognition indeed plays a major role in the daily lives of wild animals, in which the integration of many different types of information using a diverse range of cognitive processes enhances fitness.
Collapse
Affiliation(s)
- Birgit Szabo
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Anyelet Valencia-Aguilar
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Isabel Damas-Moreira
- Behavioural Ecology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Weil R, Pillay N, Rochais C. Characteristics influencing local enhancement in free-living striped mice. Behav Processes 2022; 197:104621. [PMID: 35301065 DOI: 10.1016/j.beproc.2022.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Social learning is widespread across species; however, we still know little about the impact of individual differences in behaviour on social transmission. We aimed to investigate factors influencing social learning in free-living Rhabdomys pumilio, a group-living, arid-adapted mouse. We studied 52 mice in a lid opening task in a field laboratory. We created observer-demonstrator dyads with demonstrators either opening lids or not. We measured success of observers to open lids, their attention and latency to open and time spent interacting with the device. We also considered influences of observer age, sex, group size and personality traits. Demonstrator success did not influence observer success, although attention towards the demonstrator did impact the observers' time spent with the device. Males were more successful than females and more active/explorative observers interacted with the device faster and for a longer time compared to less active/explorative counterparts. We found no influence of age and group size on mouse success. Striped mice appeared to use cues from other individuals to learn how to solve the task and it was influenced by sex and personality. Striped mice in this studied population may use local enhancement to acquire information socially.
Collapse
Affiliation(s)
- Richard Weil
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Céline Rochais
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Rochais C, Hotte H, Pillay N. Seasonal variation in reversal learning reveals greater female cognitive flexibility in African striped mice. Sci Rep 2021; 11:20061. [PMID: 34625648 PMCID: PMC8501043 DOI: 10.1038/s41598-021-99619-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Cognitive flexibility describes the ability of animals to alter cognitively mediated behaviour in response to changing situational demands, and can vary according to prevailing environemental conditions and individual caracteristics. In the present study, we investigated (1) how learning and reversal learning performance changes between seasons, and (2) how cognitive flexibility is related to sex in a free-living small mammal. We studied 107 African striped mice, Rhabdomys pumilio, in an arid semi-desert, 58 during the hot dry summer with low food availability, and 49 during the cold wet winter with higher food availability. We used an escape box task to test for learning and reversal learning performance. We found that learning and reversal learning efficiency varied seasonally by sex: females tested in summer were faster at solving both learning and reversal tasks than males tested in winter. Performance varied within sex: males tested in winter showed faster learning compared to males tested in summer. During reversal learning, females tested in summer were more efficient and solve the task faster compared to females tested in winter. We suggest that seasonal cognitive performance could be related to sex-specific behavioural characteristics of the species, resulting in adaptation for living in harsh environmental conditions.
Collapse
Affiliation(s)
- Céline Rochais
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Hoël Hotte
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,ANSES, Plant Health Laboratory - Nematology Unit, Domaine de la Motte Au Vicomte, BP 35327, 35653, Le Rheu Cédex, France
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Seasonal changes in problem-solving in wild African striped mice. Anim Cogn 2021; 25:401-413. [PMID: 34591197 DOI: 10.1007/s10071-021-01559-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/20/2021] [Accepted: 09/04/2021] [Indexed: 10/20/2022]
Abstract
Innovative problem-solving ability is a predictor of whether animals can successfully cope with environmental changes. These environmental changes can test the limits of animals, for example when energy availability decreases seasonally and, hence, problem-solving performance decreases because less energy is available for cognitive processes. Here, we investigated: (1) how problem-solving performance changed between seasons that differed significantly in food availability; (2) whether these changes were related to environmentally induced physiological changes in blood glucose and ketone levels, indicators of energy availability; and (3) whether individual variation in problem-solving was related to sex differences. We studied 99 free-ranging African striped mice, Rhabdomys pumilio, in the Succulent Karoo, South Africa, 55 during the hot dry summer with low food availability and 44 during the cold wet winter with higher food availability. We measured their problem-solving abilities using a food extraction task and found no seasonal differences in problem-solving success. However, mice solved the problem faster in summer versus winter. In summer, food availability was reduced and blood ketones increased but there was no seasonal difference in blood glucose levels. There were no correlation between problem-solving performance and blood glucose or ketone levels. Overall, more males solved the task than females. It appears that in striped mice cognitive functions can be maintained under harsh environmental conditions.
Collapse
|