1
|
Binns GE, Hämäläinen L, Rowland HM, Caputi L, Kunert M, Mappes J, Ramon-Cabrera GM, Umbers KDL, Hart NS, Herberstein ME. Sexual differences in defensive strategies: investigating chemical defences and visual signals in a wasp moth Amata nigriceps. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242186. [PMID: 40271139 PMCID: PMC12015569 DOI: 10.1098/rsos.242186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
Aposematic animals use conspicuous warning signals to advertise their chemical defences to predators. Selection by predators can favour conspicuousness and large pattern elements, which enhance predator avoidance learning. In aposematic species, conspicuousness often varies among individuals. This variation can be explained if conspicuousness reflects the levels of chemical defences, if signal production or defence acquisition is costly, and if physiological trade-offs and opposing selection pressures impose constraints. To understand the link between conspicuousness and chemical defences, we need to quantify the variability in warning signals and identify the chemical compounds involved. Here, we examined the warning signal variability and chemical composition of the red-necked wasp moth (Amata nigriceps). We photographed the wings and abdomens of male and female moths and analysed their chemical composition using ultra-performance liquid chromatography. Females displayed more orange on their wings, a trait known to enhance protection against predators. While we ruled out the presence of pyrrolizidine alkaloids in adult moths, an untargeted metabolomics approach suggests that they sequester other compounds, such as steroidal alkaloids and alkylbenzenes, which may serve as chemical defences. Females had higher concentrations of these compounds than males but ecotoxicology assays with Daphnia showed that male and female moths exhibited similar levels of toxicity.
Collapse
Affiliation(s)
- Georgina E. Binns
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Liisa Hämäläinen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Hannah M. Rowland
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyvaskyla, Finland
- University of Helsinki, Helsinki, Finland
| | - Giovanni M. Ramon-Cabrera
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical iBIOTROP, Museo de Zoología & Laboratorio de Zoología Terrestre, Quito, Ecuador
| | - Kate D. L. Umbers
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
- School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Nathan S. Hart
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marie E. Herberstein
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Nordrhein-Westfalen, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Inoue S, Masaki Y, Nakagawa S, Yokoi S. An evolutionarily distinct Hmgn2 variant influences shape recognition in Medaka Fish. Commun Biol 2024; 7:973. [PMID: 39179658 PMCID: PMC11344144 DOI: 10.1038/s42003-024-06667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Protein sequence diversification significantly impacts physiological traits. In this study, using medaka fish (Oryzias latipes), we identify a novel protein variant affecting shape preference behavior. Re-analysis of sequencing data reveals that LOC101156433 encodes a unique Hmgn2 variant with unusual subnuclear localization, clustered separately from the Hmgn2 clades of other species. Medaka mutants with this variant showed reduce telencephalic regions and altered shape preference, suggesting a link between protein sequence variation and behavioral changes. Additionally, this Hmgn2 variant is common in Acanthopterygii fishes, which are adapted to a variety of environments, indicating its potential evolutionary significance. Our findings highlight the relationship between amino acid sequence variation and the development of new molecular and behavioral adaptations, providing insights into the visual shape perception system in fish.
Collapse
Affiliation(s)
- Shuntaro Inoue
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yume Masaki
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
3
|
Santacà M, Gatto E, Dadda M, Bruzzone M, Dal Maschio M, Bisazza A. Exploring the Importance of Environmental Complexity for Newly Hatched Zebrafish. Animals (Basel) 2024; 14:1031. [PMID: 38612270 PMCID: PMC11011065 DOI: 10.3390/ani14071031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The effects of an early impoverished social or physical environment on vertebrate neural development and cognition has been known for decades. While existing studies have focused on the long-term effects, measuring adult cognitive phenotypes, studies on the effects of environmental complexity on the early stages of development are lacking. Zebrafish (Danio rerio) hatchlings are assumed to have minimal interaction with their environment and are routinely reared in small, bare containers. To investigate the effects of being raised under such conditions on development of behaviour and cognition, hatchlings housed for 10 days in either an enriched or a standard environment underwent two cognitive tasks. The results were mixed. Subjects of the two treatments did not differ in performance when required to discriminate two areas. Conversely, we found a significant effect in a number discrimination task, with subjects from impoverished condition performing significantly worse. In both experiments, larvae reared in impoverished environment showed a reduced locomotor activity. Given the effects that enrichment appears to exert on larvae, a third experiment explored whether hatchlings exhibit a spontaneous preference for more complex environments. When offered a choice between a bare setting and one with objects of different shapes and colors, larvae spent over 70% of time in the enriched sector. Deepening these effects of an early impoverished environment on cognitive development is crucial for the welfare of captive zebrafish populations and for enhancing the quality and reliability of studies on larval zebrafish.
Collapse
Affiliation(s)
- Maria Santacà
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (M.D.)
| | - Elia Gatto
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy;
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (M.D.)
| | - Matteo Bruzzone
- Padua Neuroscience Center, University of Padova, 35131 Padova, Italy (M.D.M.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Dal Maschio
- Padua Neuroscience Center, University of Padova, 35131 Padova, Italy (M.D.M.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (M.D.)
- Padua Neuroscience Center, University of Padova, 35131 Padova, Italy (M.D.M.)
| |
Collapse
|