1
|
Arisi I, Malimpensa L, Manzini V, Brandi R, Gosetti di Sturmeck T, D’Amelio C, Crisafulli S, Ferrazzano G, Belvisi D, Malerba F, Florio R, Pascale E, Soreq H, Salvetti M, Cattaneo A, D’Onofrio M, Conte A. Cladribine and ocrelizumab induce differential miRNA profiles in peripheral blood mononucleated cells from relapsing-remitting multiple sclerosis patients. Front Immunol 2023; 14:1234869. [PMID: 38152407 PMCID: PMC10751352 DOI: 10.3389/fimmu.2023.1234869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/06/2023] [Indexed: 12/29/2023] Open
Abstract
Background and objectives Multiple sclerosis (MS) is a chronic, progressive neurological disease characterized by early-stage neuroinflammation, neurodegeneration, and demyelination that involves a spectrum of heterogeneous clinical manifestations in terms of disease course and response to therapy. Even though several disease-modifying therapies (DMTs) are available to prevent MS-related brain damage-acting on the peripheral immune system with an indirect effect on MS lesions-individualizing therapy according to disease characteristics and prognostic factors is still an unmet need. Given that deregulated miRNAs have been proposed as diagnostic tools in neurodegenerative/neuroinflammatory diseases such as MS, we aimed to explore miRNA profiles as potential classifiers of the relapsing-remitting MS (RRMS) patients' prospects to gain a more effective DMT choice and achieve a preferential drug response. Methods A total of 25 adult patients with RRMS were enrolled in a cohort study, according to the latest McDonald criteria before (pre-cladribine, pre-CLA; pre-ocrelizumab, pre-OCRE, time T0) and after high-efficacy DMTs, time T1, 6 months post-CLA (n = 10, 7 F and 3 M, age 39.0 ± 7.5) or post-OCRE (n = 15, 10 F and 5 M, age 40.5 ± 10.4) treatment. A total of 15 age- and sex-matched healthy control subjects (9 F and 6 M, age 36.3 ± 3.0) were also selected. By using Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells (PBMC). miRNA-target networks were obtained by miRTargetLink, and Pearson's correlation served to estimate the association between miRNAs and outcome clinical features. Results First, the miRNA profiles of pre-CLA or pre-OCRE RRMS patients compared to healthy controls identified modulated miRNA patterns (40 and seven miRNAs, respectively). A direct comparison of the two pre-treatment groups at T0 and T1 revealed more pro-inflammatory patterns in the pre-CLA miRNA profiles. Moreover, both DMTs emerged as being capable of reverting some dysregulated miRNAs toward a protective phenotype. Both drug-dependent miRNA profiles and specific miRNAs, such as miR-199a-3p, miR-29b-3p, and miR-151a-3p, emerged as potentially involved in these drug-induced mechanisms. This enabled the selection of miRNAs correlated to clinical features and the related miRNA-mRNA network. Discussion These data support the hypothesis of specific deregulated miRNAs as putative biomarkers in RRMS patients' stratification and DMT drug response.
Collapse
Affiliation(s)
- Ivan Arisi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Leonardo Malimpensa
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Valeria Manzini
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Rossella Brandi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | | | - Chiara D’Amelio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Sebastiano Crisafulli
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Belvisi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Esterina Pascale
- Department of Medical-Surgical Sciences and of Biotechnologies, “Sapienza” University of Rome, Rome, Italy
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science and The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marco Salvetti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
- Centre for Experimental Neurological Therapies (CENTERS), Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Mara D’Onofrio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Antonella Conte
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Cytokines as Biomarkers of Treatment Response to IFN β in Relapsing-Remitting Multiple Sclerosis. Mult Scler Int 2014; 2014:436764. [PMID: 25152817 PMCID: PMC4134814 DOI: 10.1155/2014/436764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/09/2014] [Accepted: 07/13/2014] [Indexed: 12/23/2022] Open
Abstract
Background. MS patients show a remarkable heterogeneity in their response to disease modifying treatments. Given the need for early treatment initiation and the diversity of available options, a predictive marker that indicates good or poor response to treatment is highly desirable. Objective. To find a biomarker for treatment response to IFNβ among pro- and anti-inflammatory cytokines. Materials and Methods. IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, IL-17A, and TGF-β1 levels were measured in serum and CSF of 43 patients with RR-MS who were followed up for a mean period of 5.3 years. Thirty-five patients received IFNβ treatment and were divided into good responders (GR, n = 19) and poor responders (PR, n = 16). The remaining 8 patients showed a very favorable outcome and remained untreated (noRx). Results. GR had significantly higher serum baseline levels of IL-17A than PR and significantly higher serum levels of IL-17A, IFN-γ, TNF-α, and IL-2 than noRx. PR had significantly higher IFN-γ serum levels than noRx. No significant differences were observed in serum levels of IL-6, IL-4, IL-10, and TGF-β1 or the levels of all cytokines measured in CSF between the 3 groups of patients. Conclusions. Baseline serum levels of IL-17A can be used as a biomarker of IFNβ treatment response.
Collapse
|
4
|
Abstract
Multiple sclerosis (MS) is considered a heterogeneous disease with respect to disease progression and treatment response, which have both remained highly unpredictable. With an increasing number of available disease modifying therapies, strategies for treatment allocation in the individual patient or subgroup of patients has become more important. Therefore biomarkers, which will identify subgroups of MS patients and predict treatment response early in the course of the disease, are urgently needed. Here we review current and emerging biomarkers, as well as study concepts for identification of new biomarkers in MS.
Collapse
Affiliation(s)
- Dorothea Buck
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | | |
Collapse
|
5
|
Arru G, Leoni S, Pugliatti M, Mei A, Serra C, Delogu LG, Manetti R, Dolei A, Sotgiu S, Mameli G. Natalizumab inhibits the expression of human endogenous retroviruses of the W family in multiple sclerosis patients: a longitudinal cohort study. Mult Scler 2013; 20:174-82. [DOI: 10.1177/1352458513494957] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background: Several viruses were reported as co-factors triggering the pathogenesis of multiple sclerosis (MS), including the endogenous retroviruses of the HERV-W family, that were also proposed as biomarkers of disease progression and therapy outcome. Objective: The objective of this article is to clarify whether in MS patients treatment with natalizumab has effects on MSRV/syncytin-1/HERV-W expression and the possible relationship with disease outcome. Methods: Peripheral blood mononuclear cells were collected from 22 patients with relapsing–remitting disease, at entry and after three, six and 12 months of treatment with natalizumab. The cell subpopulations and the expression of MSRV env/syncytin-1/HERV-W env were analyzed by flow cytometry and by discriminatory env-specific RT-PCR assays. Results: By flow cytometry the relative amounts of T, NK and monocyte subpopulations were shown to remain fairly constant. A relative increase of B lymphocytes was observed at three to six months ( p = 0.033). The MSRV env and syncitin-1 transcripts were reduced at six to 12 months of therapy ( p = 0.0001). Accordingly, at month 12, the plasma-membrane levels of the HERV-W env protein were reduced ( p = 0.0001). B cells, NK and monocytes but not T cells expressed the HERV-W env protein. None of the patients relapsed during therapy. Conclusion: Effective therapy with natalizumab downregulates MSRV/syncytin-1/HERV-W expression.
Collapse
Affiliation(s)
- Giannina Arru
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Stefania Leoni
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Maura Pugliatti
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Alessandra Mei
- Department of Biomedical Sciences and Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Italy
| | - Caterina Serra
- Department of Biomedical Sciences and Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Italy
| | | | - Roberto Manetti
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Antonina Dolei
- Department of Biomedical Sciences and Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Italy
| | - Stefano Sotgiu
- Department of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Giuseppe Mameli
- Department of Biomedical Sciences and Center of Excellence for Biotechnology Development and Biodiversity Research, University of Sassari, Italy
| |
Collapse
|
6
|
Hueber W, Robinson WH. Genomics and proteomics: Applications in autoimmune diseases. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2009; 2:39-48. [PMID: 23226033 PMCID: PMC3513200 DOI: 10.2147/pgpm.s4708] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Indexed: 12/22/2022]
Abstract
Tremendous progress has been made over the past decade in the development and refinement of genomic and proteomic technologies for the identification of novel drug targets and molecular signatures associated with clinically important disease states, disease subsets, or differential responses to therapies. The rapid progress in high-throughput technologies has been preceded and paralleled by the elucidation of cytokine networks, followed by the stepwise clinical development of pathway-specific biological therapies that revolutionized the treatment of autoimmune diseases. Together, these advances provide opportunities for a long-anticipated personalized medicine approach to the treatment of autoimmune disease. The ever-increasing numbers of novel, innovative therapies will need to be harnessed wisely to achieve optimal long-term outcomes in as many patients as possible while complying with the demands of health authorities and health care providers for evidence-based, economically sound prescription of these expensive drugs. Genomic and proteomic profiling of patients with autoimmune diseases holds great promise in two major clinical areas: (1) rapid identification of new targets for the development of innovative therapies and (2) identification of patients who will experience optimal benefit and minimal risk from a specific (targeted) therapy. In this review, we attempt to capture important recent developments in the application of genomic and proteomic technologies to translational research by discussing informative examples covering a diversity of autoimmune diseases.
Collapse
Affiliation(s)
- Wolfgang Hueber
- VA Palo Alto Health Care System, Palo Alto, CA, USA; ; Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA; ; Novartis Institutes of Biomedical Research, Novartis, Basle, Switzerland
| | | |
Collapse
|