1
|
Carabe A, Karagounis IV, Huynh K, Bertolet A, François N, Kim MM, Maity A, Abel E, Dale R. Radiobiological effectiveness difference of proton arc beams versus conventional proton and photon beams. Phys Med Biol 2020; 65:165002. [PMID: 32413889 DOI: 10.1088/1361-6560/ab9370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper aims to demonstrate the difference in biological effectiveness of proton monoenergetic arc therapy (PMAT) compared to intensity modulated proton therapy (IMPT) and conventional 6 MV photon therapy, and to quantify this difference when exposing cells of different radiosensitivity to the same experimental conditions for each modality. V79, H1299 and H460 cells were cultured in petri dishes placed in the central axis of a cylindrical and homogeneous solid water phantom of 20 cm in diameter. For the PMAT plan, cells were exposed to 13 mono-energetic proton beams separated every 15° over a 180° arc, designed to deliver a uniform dose of higher LET to the petri dishes. For the IMPT plans, 3 fields were used, where each field was modulated to cover the full target. Cells were also exposed to 6 MV photon beams in petri dishes to characterize their radiosensitivity. The relative biological effectiveness of the PMAT plans compared with those of IMPT was measured using clonogenic assays. Similarly, in order to study the quantity and quality of the DNA damage induced by the PMAT plans compared to that of IMPT and photons, γ-H2AX assays were conducted to study the relative amount of DNA damage induced by each modality, and their repair rate over time. The clonogenic assay revealed similar survival levels to the same dose delivered with IMPT or x-rays. However, a systematic average of up to a 43% increase in effectiveness in PMAT plans was observed when compared with IMPT. In addition, the repair kinetic assays proved that PMAT induces larger and more complex DNA damage (evidenced by a slower repair rate and a larger proportion of unrepaired DNA damage) than IMPT. The repair kinetics of IMPT and 6 MV photon therapy were similar. Mono-energetic arc beams offer the possibility of taking advantage of the enhanced LET of proton beams to increase TCP. This study presents initial results based on exposing cells with different radiosensitivity to other modalities under the same experimental conditions, but more extensive clonogenic and in-vivo studies will be required to confirm the validity of these results.
Collapse
Affiliation(s)
- Alejandro Carabe
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, PA, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Tazat K, Reshetnyak O, Shtraus N, Sayag I, Mabjeesh NJ, Amir S. Delivery of Radiation at the Lowest Dose Rate by a Modern Linear Accelerator is Most Effective in Inhibiting Prostate Cancer Growth. Technol Cancer Res Treat 2020; 19:1533033820935525. [PMID: 32608338 PMCID: PMC7331765 DOI: 10.1177/1533033820935525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE External beam radiotherapy is one of the treatment options for organ-confined prostate cancer. A total dose of 70 to 81 Gray (Gy) is given daily (1.8-2.5 Gy/d), with a dose rate of 3 to 6 Gy/min over 28 to 45 treatments during 8 to 9 weeks. We applied the latest technological development in linear accelerators for enabling a wide range of dose rates (from 0.2-21 Gy/min) to test the effect of different delivery dose rates on prostate tumor growth in an animal xenograft model. MATERIALS AND METHODS A prostate cancer xenograft model was established in CD1/nude mice by means of PC-3 and CL-1 cells. The animals were radiated by a TrueBeam linear accelerator that delivered 4 dose rates ranging from 0.6 to 14 Gy/min, and reaching a total dose of 20 Gy. The mice were weighed and monitored for tumor development twice weekly. A 2-way analysis of variance was used to compare statistical differences between the groups. RESULTS Tumor growth was inhibited by radiation at all 4 dose rates in the 20 study mice compared to no radiation (n = 5, controls). The most significant reduction in tumor volumes was observed when the same dose of radiation was delivered at a rate of 0.6 Gy/min (P < .01). The animals' weights were not affected by any dose rate. CONCLUSIONS Delivery of radiation with a TrueBeam linear accelerator at the lowest possible rate was most effective in prostate cancer growth inhibition and might be considered a preferential treatment mode for localized prostate cancer.
Collapse
Affiliation(s)
- Keren Tazat
- Prostate Cancer Research Laboratory, Tel Aviv University, Tel Aviv, Israel
| | - Oleg Reshetnyak
- Prostate Cancer Research Laboratory, Tel Aviv University, Tel Aviv, Israel
| | - Natan Shtraus
- Institute of Radiotherapy, Tel Aviv Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Sayag
- Prostate Cancer Research Laboratory, Tel Aviv University, Tel Aviv, Israel
| | - Nicola J. Mabjeesh
- Prostate Cancer Research Laboratory, Tel Aviv University, Tel Aviv, Israel
- Department of Urology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sharon Amir
- Prostate Cancer Research Laboratory, Tel Aviv University, Tel Aviv, Israel
- Sharon Amir, Prostate Cancer Research Laboratory, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 6423910, Israel.
| |
Collapse
|
3
|
Wilhelm ML, Chan MKH, Abel B, Cremers F, Siebert FA, Wurster S, Krug D, Wolff R, Dunst J, Hildebrandt G, Schweikard A, Rades D, Ernst F, Blanck O. Tumor-dose-rate variations during robotic radiosurgery of oligo and multiple brain metastases. Strahlenther Onkol 2020; 197:581-591. [PMID: 32588102 PMCID: PMC8219559 DOI: 10.1007/s00066-020-01652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/02/2020] [Indexed: 12/31/2022]
Abstract
Purpose For step-and-shoot robotic stereotactic radiosurgery (SRS) the dose delivered over time, called local tumor-dose-rate (TDR), may strongly vary during treatment of multiple lesions. The authors sought to evaluate technical parameters influencing TDR and correlate TDR to clinical outcome. Material and methods A total of 23 patients with 162 oligo (1–3) and multiple (>3) brain metastases (OBM/MBM) treated in 33 SRS sessions were retrospectively analyzed. Median PTV were 0.11 cc (0.01–6.36 cc) and 0.50 cc (0.12–3.68 cc) for OBM and MBM, respectively. Prescription dose ranged from 16 to 20 Gy prescribed to the median 70% isodose line. The maximum dose-rate for planning target volume (PTV) percentage p in time span s during treatment (TDRs,p) was calculated for various p and s based on treatment log files and in-house software. Results TDR60min,98% was 0.30 Gy/min (0.23–0.87 Gy/min) for OBM and 0.22 Gy/min (0.12–0.63 Gy/min) for MBM, respectively, and increased by 0.03 Gy/min per prescribed Gy. TDR60min,98% strongly correlated with treatment time (ρ = −0.717, p < 0.001), monitor units (MU) (ρ = −0.767, p < 0.001), number of beams (ρ = −0.755, p < 0.001) and beam directions (ρ = −0.685, p < 0.001) as well as lesions treated per collimator (ρ = −0.708, P < 0.001). Median overall survival (OS) was 20 months and 1‑ and 2‑year local control (LC) was 98.8% and 90.3%, respectively. LC did not correlate with any TDR, but tumor response (partial response [PR] or complete response [CR]) correlated with all TDR in univariate analysis (e.g., TDR60min,98%: hazard ration [HR] = 0.974, confidence interval [CI] = 0.952–0.996, p = 0.019). In multivariate analysis only concomitant targeted therapy or immunotherapy and breast cancer tumor histology remained a significant factor for tumor response. Local grade ≥2 radiation-induced tissue reactions were noted in 26.3% (OBM) and 5.2% (MBM), respectively, mainly influenced by tumor volume (p < 0.001). Conclusions Large TDR variations are noted during MBM-SRS which mainly arise from prolonged treatment times. Clinically, low TDR corresponded with decreased local tumor responses, although the main influencing factor was concomitant medication.
Collapse
Affiliation(s)
- Maria-Lisa Wilhelm
- Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany.,Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany
| | - Mark K H Chan
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.,Strahlenklinik, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Benedikt Abel
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Florian Cremers
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Stefan Wurster
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, University Medicine Greifswald, Greifswald, Germany
| | - David Krug
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany.,Department of Neurosurgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany
| | - Guido Hildebrandt
- Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center Frankfurt and Northern Germany, Guestrow, Germany. .,Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.
| |
Collapse
|
4
|
Pinzi V, Bisogno I, Prada F, Ciusani E, Fariselli L. Radiotherapy of meningioma: a treatment in need of radiobiological research. Int J Radiat Biol 2018; 94:621-627. [DOI: 10.1080/09553002.2018.1478157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Valentina Pinzi
- Neurosurgery Department, Radiotherapy Unit, Istituto Neurologico Fondazione C. Besta, Milan, Italy
| | - Ilaria Bisogno
- Neurosurgery Department, Radiotherapy Unit, Istituto Neurologico Fondazione C. Besta, Milan, Italy
- Biology and Biotechnology Department, University of Pavia, Pavia, Italy
| | - Francesco Prada
- Neurosurgery Department, Istituto Neurologico Fondazione C. Besta, Milan, Italy
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Emilio Ciusani
- Laboratory of Clinical Pathology and Medical Genetics, Istituto Neurologico Fondazione C. Besta, Milan, Italy
| | - Laura Fariselli
- Neurosurgery Department, Radiotherapy Unit, Istituto Neurologico Fondazione C. Besta, Milan, Italy
| |
Collapse
|
5
|
Fetcko K, Lukas RV, Watson GA, Zhang L, Dey M. Survival and complications of stereotactic radiosurgery: A systematic review of stereotactic radiosurgery for newly diagnosed and recurrent high-grade gliomas. Medicine (Baltimore) 2017; 96:e8293. [PMID: 29068998 PMCID: PMC5671831 DOI: 10.1097/md.0000000000008293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/13/2017] [Accepted: 09/16/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Utilization of stereotactic radiosurgery (SRS) for treatment of high-grade gliomas (HGGs) has been slowly increasing with variable reported success rates. OBJECTIVE Systematic review of the available data to evaluate the efficacy of SRS as a treatment for HGG with regards to median overall survival (OS) and progression-free survival (PFS), in addition to ascertaining the rate of radiation necrosis and other SRS-related major neurological complications. METHODS Literature searches were performed for publications from 1992 to 2016. The pooled estimates of median PFS and median OS were calculated as a weighted estimate of population medians. Meta-analyses of published rates of radiation necrosis and other major neurological complications were also performed. RESULTS Twenty-nine studies reported the use of SRS for recurrent HGG, and 16 studies reported the use of SRS for newly diagnosed HGG. For recurrent HGG, the pooled estimates of median PFS and median OS were 5.42 months (3-16 months) and 20.19 months (9-65 months), respectively; the pooled radiation necrosis rate was 5.9% (0-44%); and the pooled estimates of major neurological complications rate was 3.3% (0-23%). For newly diagnosed HGG, the pooled estimates of median PFS and median OS were 7.89 months (5.5-11 months) and 16.87 months (9.5-33 months) respectively; the pooled radiation necrosis rate was 6.5% (0-33%); and the pooled estimates of other major neurological complications rate was 1.5% (0-25%). CONCLUSION Our results suggest that SRS holds promise as a relatively safe treatment option for HGG. In terms of efficacy at this time, there are inadequate data to support routine utilization of SRS as the standard of care for newly diagnosed or recurrent HGG. Further studies should be pursued to define more clearly the therapeutic role of SRS.
Collapse
Affiliation(s)
- Kaleigh Fetcko
- Department of Neurosurgery, Indiana University, Indianapolis, IN
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University, Chicago, IL
| | - Gordon A. Watson
- Department of Radiation Oncology, Simon Cancer Center, Indiana University, Indianapolis, IN
| | - Lingjiao Zhang
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philidelphia, PA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University, Indianapolis, IN
| |
Collapse
|
6
|
Can high dose rates used in cancer radiotherapy change therapeutic effectiveness? Contemp Oncol (Pozn) 2017; 20:449-452. [PMID: 28239281 PMCID: PMC5320456 DOI: 10.5114/wo.2016.65603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022] Open
Abstract
Current cancer radiotherapy relies on increasingly high dose rates of ionising radiation (100-2400 cGy/min). It is possible that changing dose rates is not paralleled by treatment effectiveness. Irradiating cancer cells is assumed to induce molecular alterations that ultimately lead to apoptotic death. Studies comparing the efficacy of radiation-induced DNA damage and apoptotic death in relation to varying dose rates do not provide unequivocal data. Whereas some have demonstrated higher dose rates (single dose) to effectively kill cancer cells, others claim the opposite. Recent gene expression studies in cells subject to variable dose rates stress alterations in molecular signalling, especially in the expression of genes linked to cell survival, immune response, and tumour progression. Novel irradiation techniques of modern cancer treatment do not rely anymore on maintaining absolute constancy of dose rates during radiation emission: instead, timing and exposure areas are regulated temporally and spatially by modulating the dose rate and beam shape. Such conditions may be reflected in tumour cells' response to irradiation, and this is supported by the references provided.
Collapse
|
7
|
Blanck O, Ipsen S, Chan MK, Bauer R, Kerl M, Hunold P, Jacobi V, Bruder R, Schweikard A, Rades D, Vogl TJ, Kleine P, Bode F, Dunst J. Treatment Planning Considerations for Robotic Guided Cardiac Radiosurgery for Atrial Fibrillation. Cureus 2016; 8:e705. [PMID: 27588226 PMCID: PMC4999353 DOI: 10.7759/cureus.705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose Robotic guided stereotactic radiosurgery has recently been investigated for the treatment of atrial fibrillation (AF). Before moving into human treatments, multiple implications for treatment planning given a potential target tracking approach have to be considered. Materials & Methods Theoretical AF radiosurgery treatment plans for twenty-four patients were generated for baseline comparison. Eighteen patients were investigated under ideal tracking conditions, twelve patients under regional dose rate (RDR = applied dose over a certain time window) optimized conditions (beam delivery sequence sorting according to regional beam targeting), four patients under ultrasound tracking conditions (beam block of the ultrasound probe) and four patients with temporary single fiducial tracking conditions (differential surrogate-to-target respiratory and cardiac motion). Results With currently known guidelines on dose limitations of critical structures, treatment planning for AF radiosurgery with 25 Gy under ideal tracking conditions with a 3 mm safety margin may only be feasible in less than 40% of the patients due to the unfavorable esophagus and bronchial tree location relative to the left atrial antrum (target area). Beam delivery sequence sorting showed a large increase in RDR coverage (% of voxels having a larger dose rate for a given time window) of 10.8-92.4% (median, 38.0%) for a 40-50 min time window, which may be significant for non-malignant targets. For ultrasound tracking, blocking beams through the ultrasound probe was found to have no visible impact on plan quality given previous optimal ultrasound window estimation for the planning CT. For fiducial tracking in the right atrial septum, the differential motion may reduce target coverage by up to -24.9% which could be reduced to a median of -0.8% (maximum, -12.0%) by using 4D dose optimization. The cardiac motion was also found to have an impact on the dose distribution, at the anterior left atrial wall; however, the results need to be verified. Conclusion Robotic AF radiosurgery with 25 Gy may be feasible in a subgroup of patients under ideal tracking conditions. Ultrasound tracking was found to have the lowest impact on treatment planning and given its real-time imaging capability should be considered for AF robotic radiosurgery. Nevertheless, advanced treatment planning using RDR or 4D respiratory and cardiac dose optimization may be still advised despite using ideal tracking methods.
Collapse
Affiliation(s)
- Oliver Blanck
- Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany ; Saphir Radiosurgery Center, Frankfurt and Güstrow, Germany
| | - Svenja Ipsen
- Robotics and Cognitive Systems, University of Lübeck
| | - Mark K Chan
- Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany ; Department for Radiation Oncology, Tuen Mun Hospital, Hong Kong, Hong Kong
| | - Ralf Bauer
- Institute for Diagnostics and Interventional Radiology, University Clinic Frankfurt, Germany ; Department for Radiology and Nuclear Medicine, Kantonsspital St. Gallen, Switzerland
| | - Matthias Kerl
- Institute for Diagnostics and Interventional Radiology, University Clinic Frankfurt, Germany ; Radiology, Darmstadt, Germany
| | - Peter Hunold
- Clinic for Radiology and Nuclear Medicine, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Volkmar Jacobi
- Institute for Diagnostics and Interventional Radiology, University Clinic Frankfurt, Germany
| | - Ralf Bruder
- Institute for Robotics and Cognitive Systems, University of Lubeck
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Luebeck, Institute for Robotics and Cognitive Systems, University of Lubeck
| | - Dirk Rades
- Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Thomas J Vogl
- Institute for Diagnostics and Interventional Radiology, University Clinic Frankfurt, Germany
| | - Peter Kleine
- Department for Thoracic, Cardiac and Thoracic Vascular Surgery, University Clinic Frankfurt, Germany
| | - Frank Bode
- Cardiology Department, Sana Clinic Oldenburg in Holstein
| | - Jürgen Dunst
- Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany ; Department for Radiation Oncology, University Medical Center Copenhagen, Denmark
| |
Collapse
|
8
|
Viau M, Perez AF, Bodgi L, Devic C, Granzotto A, Ferlazzo ML, Bourguignon M, Puisieux A, Lacornerie T, Lartigau É, Lagrange JL, Foray N. [Repeated radiation dose effect and DNA repair: Importance of the individual factor and the time interval between the doses]. Cancer Radiother 2016; 20:217-25. [PMID: 27020715 DOI: 10.1016/j.canrad.2015.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022]
Abstract
The dose fractionation effect is a recurrent question of radiation biology research that remains unsolved since no model predicts the clinical effect only with the cumulated dose and the radiobiology of irradiated tissues. Such an important question is differentially answered in radioprotection, radiotherapy, radiology or epidemiology. A better understanding of the molecular response to radiation makes possible today a novel approach to identify the parameters that condition the fractionation effect. Particularly, the time between doses appears to be a key factor since it will permit, or not, the repair of certain radiation-induced DNA damages whose repair rates are of the order of seconds, minutes or hours: the fractionation effect will therefore vary according to the functionality of the different repair pathways, whatever for tumor or normal tissues.
Collapse
Affiliation(s)
- M Viau
- Inserm, UMR1052, centre de recherches en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France
| | - A-F Perez
- Inserm, UMR1052, centre de recherches en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France
| | - L Bodgi
- Inserm, UMR1052, centre de recherches en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France
| | - C Devic
- Inserm, UMR1052, centre de recherches en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France
| | - A Granzotto
- Inserm, UMR1052, centre de recherches en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France
| | - M L Ferlazzo
- Inserm, UMR1052, centre de recherches en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France
| | - M Bourguignon
- Institut de radioprotection et sûreté nucléaire, BP 17, 92260 Fontenay-aux-Roses, France
| | - A Puisieux
- Inserm, UMR1052, centre de recherches en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France
| | - T Lacornerie
- Département de radiothérapie, centre Oscar-Lambret, ONCOLille, université de Lille, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - É Lartigau
- Département de radiothérapie, centre Oscar-Lambret, ONCOLille, université de Lille, 3, rue Frédéric-Combemale, 59000 Lille, France
| | - J-L Lagrange
- Département de radiothérapie, CHU Henri-Mondor, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - N Foray
- Inserm, UMR1052, centre de recherches en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France.
| |
Collapse
|