1
|
Zhang W, Ni Y, Li J, Hua R, Wang Y, Yang H, Li X, Gan M, Chu G. NUAK2 mediated regulation of Schwann Cell proliferation and migration in peripheral nerve injury via YAP. Heliyon 2024; 10:e34127. [PMID: 39071701 PMCID: PMC11282989 DOI: 10.1016/j.heliyon.2024.e34127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
NUAK2 is a member of the AMP-activated protein kinase (AMPK) family, which plays an essential role in cellular processes such as apoptosis, proliferation, and cell fate. Recent studies have already shown that silencing of NUAK2 blocks proliferation and promotes apoptosis of human melanoma cells and liver cancer cells. In addition, NUAK2 is involved in the development of glioblastoma via regulating the expression of cancer stem cell-related genes, and it promotes the cell cycle entry in the glioblastoma cells. However, the expression and the role of NUAK2 in the progress of peripheral nerve regeneration after injury are yet to be elucidated. We observed that NUAK2 was upregulated following distal sciatic nerve crush (SNC). Interestingly, we discovered that NUAK2 showed co-localization with S100 (Schwann cell marker). Furthermore, we found that the NUAK2 had a spatiotemporal protein expression, which was consistent with proliferating cell nuclear-antigen (PCNA). The protein level of NUAK2 and YAP was upregulated in the model of TNF-α-induced Schwann cell (SC) proliferation. Furthermore, flow cytometry analysis, CCK-8, transwell assays, and wound healing assays were all performed with the purpose of exploring the role of NUAK2 in the regulation of SC proliferation and migration. More importantly, we found that NUAK2-deficient SCs showed significantly reduced expression of Yes-associated protein (YAP). Bioinformatic analysis identified upstream regulators of NUAK2 and NUAK2-associated genes (e.g., YAP1). Finally, we investigated the recovery changes during regeneration progress through the walking track analysis. Thus, we speculated that NUAK2 was involved in biochemical and physiological responses of SCs after SNC via YAP-driven proliferation and migration, and this study determined the importance of NUAK2 as a potential target in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yingchen Ni
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianxin Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Runjia Hua
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yudong Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xuefeng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Minfeng Gan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Yuan W, Liu W, Zhan X, Zhou Y, Ma R, Liang S, Wang T, Ge Z. Inhibition of miR-221-3p promotes axonal regeneration and repair of primary sensory neurons via regulating p27 expression. Neuroreport 2023; 34:471-484. [PMID: 37161985 PMCID: PMC10292576 DOI: 10.1097/wnr.0000000000001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
This study aimed to explore the key microRNA (miRNA) playing a vital role in axonal regeneration with a hostile microenvironment after spinal cord injury. Based on the theory that sciatic nerve conditioning injury (SNCI) could promote the repair of the injured dorsal column. Differentially expressed miRNAs were screened according to the microarray, revealing that 47 known miRNAs were differentially expressed after injury and perhaps involved in nerve regeneration. Among the 47 miRNAs, the expression of miR-221-3p decreased sharply in the SNCI group compared with the simple dorsal column lesion (SDCL) group. Subsequently, it was confirmed that p27 was the target gene of miR-221-3p from luciferase reporter assay. Further, we found that inhibition of miR-221-3p expression could specifically target p27 to upregulate the expression of growth-associated protein 43 (GAP-43), α-tubulin acetyltransferase (α-TAT1) together with α-tubulin, and advance the regeneration of dorsal root ganglion (DRG) neuronal axons. Chondroitin sulfate proteoglycans (CSPGs) are the main components of glial scar, which can hinder the extension and growth of damaged neuronal axons. After CSPGs were used in this study, the results demonstrated that restrained miR-221-3p expression also via p27 promoted the upregulation of GAP-43, α-TAT1, and α-tubulin and enhanced the axonal growth of DRG neurons. Hence, miR-221-3p could contribute significantly to the regeneration of DRG neurons by specifically regulating p27 in the p27/CDK2/GAP-43 and p27/α-TAT1/α-tubulin pathways even in the inhibitory environment with CSPGs.
Collapse
Affiliation(s)
- Wenqi Yuan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Wei Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region
| | - Xuehua Zhan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Yueyong Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region
| | - Rong Ma
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Simin Liang
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Tianyi Wang
- Department of Spine Surgery, 981st Hospital of the Chinese People’s Liberation Army Joint Logistics Support Force, Chengde, China
| | - Zhaohui Ge
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| |
Collapse
|
3
|
Daks A, Fedorova O, Parfenyev S, Nevzorov I, Shuvalov O, Barlev NA. The Role of E3 Ligase Pirh2 in Disease. Cells 2022; 11:1515. [PMID: 35563824 PMCID: PMC9101203 DOI: 10.3390/cells11091515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| | | | | | | | | | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| |
Collapse
|
4
|
Krishnan A, Duraikannu A, Zochodne DW. Releasing 'brakes' to nerve regeneration: intrinsic molecular targets. Eur J Neurosci 2015; 43:297-308. [PMID: 26174154 DOI: 10.1111/ejn.13018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
Restoring critical neuronal architecture after peripheral nerve injury is challenging. Although immediate regenerative responses to peripheral axon injury involve the synthesis of regeneration-associated proteins in neurons and Schwann cells, an unfavorable balance between growth facilitatory and growth inhibitory signaling impairs the growth continuum of injured peripheral nerves. Molecules involved with the signaling network of tumor suppressors play crucial roles in shifting the balance between growth and restraint during axon regeneration. An understanding of the molecular framework of tumor suppressor molecules in injured neurons and its impact on stage-specific regeneration events may expose therapeutic intervention points. In this review we discuss how signaling networks of the specific tumor suppressors PTEN, Rb1, p53, p27 and p21 are altered in injured peripheral nerves and how this impacts peripheral nerve regeneration. Insights into the roles and importance of these pathways may open new avenues for improving the neurological deficits associated with nerve injury.
Collapse
Affiliation(s)
- Anand Krishnan
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Arul Duraikannu
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
5
|
Cao J, Yang J, Wang Y, Xu J, Zhou Z, Cheng C, Liu X, Cheng X, Long L, Gu X. Temporal-spatial expressions of Spy1 in rat sciatic nerve after crush. Cell Mol Neurobiol 2013; 33:213-21. [PMID: 23129232 PMCID: PMC11498019 DOI: 10.1007/s10571-012-9887-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/24/2012] [Indexed: 01/29/2023]
Abstract
As a novel cell cycle protein, Spy1 enhances cell proliferation, promotes the G1/S transition as well as inhibits apoptosis in response to UV irradiation. Spy1 levels are tightly regulated during mammary development, and overexpression of Spy1 accelerates tumorigenesis in vivo. But little is known about the role of Spy1 in the pathological process of damage and regeneration of the peripheral nervous system. Here we established a rat sciatic nerve crush (SNC) model to examine the spatiotemporal expression of Spy1. Spy1 expression was elevated gradually after sciatic nerve crush and peaked at day 3. The alteration was due to the increased expression of Spy1 in axons and Schwann cells after SNC. Spy1 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, Spy1 largely localized in axons in the crushed segment, but rarely co-localized with GAP43. These findings suggested that Spy1 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.
Collapse
Affiliation(s)
- Jianhua Cao
- Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong, 226001 People’s Republic of China
| | - Jiao Yang
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Jian Xu
- Department of Orthopaedics, Affiliated Mental Health Center of Nantong University, Nantong, 226001 People’s Republic of China
| | - Zhengming Zhou
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Chun Cheng
- Department of Immunology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaojuan Liu
- Department of Pathogenbiology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xinghai Cheng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Long Long
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 People’s Republic of China
| | - Xingxing Gu
- The Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, 19 Qi-Xiu Road, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Long L, Yang J, Wu Y, Wu H, Wei H, Deng X, Cheng X, Lou D, Chen H, Wen H. Spatiotemporal expression of SKIP after rat sciatic nerve crush. Neurochem Res 2013; 38:857-65. [PMID: 23389663 DOI: 10.1007/s11064-013-0990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/05/2013] [Accepted: 01/29/2013] [Indexed: 11/26/2022]
Abstract
Ski-interacting protein (SKIP) is a highly conserved protein from yeast to Human. As an essential spliceosomal component and transcriptional co-regulator it plays an important role in preinitiation, splicing and polyadenylation. SKIP can also combine with Ski to overcome the G1 arrest and the growth-suppressive activities of pRb. Furthermore SKIP has the capacity to augment TGF-β dependent transcription. While the distribution and function of SKIP in peripheral nervous system lesion and regeneration remain unclear. Here, we investigated the spatiotemporal expression of SKIP in an acute sciatic nerve crush model in adult rats. Western Blot analysis revealed that SKIP was expressed in normal sciatic nerves. It gradually increased, reached a peak at 1 week after crush, and then returned to the normal level at 4 weeks. Besides, we observed that up-regulation of SKIP was approximately in parallel with Proliferating cell nuclear antigen (PCNA), and numerous Schwann cells (SCs) expressing SKIP were PCNA and Ki-67 positive. Collectively, we hypothesized peripheral nerve crush induced up-regulation of SKIP in the sciatic nerve, which was associated with SCs proliferation.
Collapse
Affiliation(s)
- Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xi-Si Road, Nantong, 226001 Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|